El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Trilles, Sergio et al, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/209549

Anomaly detection based on Artificial Intelligence of Things: A Systematic Literature Mapping

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Advanced Machine Learning (ML) algorithms can be applied using Edge Computing (EC) to detect anomalies, which is the basis of Artificial Intelligence of Things (AIoT). EC has emerged as a solution for processing and analysing information on IoT devices. This field aims to allow the implementation of Machine/Deep Learning (DL) models on MicroController Units (MCUs). Integrating anomaly detection analysis on Internet of Things (IoT) devices produces clear benefits as it ensures the use of accurate data from the initial stage. However, this process poses a challenge due to the unique characteristics of IoT. This article presents a Systematic Literature Mapping of scientific research on the application of anomaly detection techniques in EC using MCUs. A total of 18 papers published over the period 2021-2023 were selected from a total of 162 in four databases of scientific papers. The results of this paper provide a comprehensive overview of anomaly detection using TinyML and MCUs. The main contributions of this survey are the fact that it aims to: (a) study techniques for anomaly detection in ML/DL and validation metrics used in the AIoT; (b) analyse data used in the estimation of models; (c) show how ML is applied in EC using hardware or software; (d) investigate the main microcontrollers, types of power supply, and communication technology; and (e) develop a taxonomy of ML/DL algorithms used to detect anomalies in TinyML. Finally, the benefits and challenges of this kind of TinyML analysis are described.

Citació

Citació

TRILLES, Sergio, HAMMAD, Sahibzada saadoon, ISKANDARYAN, Ditsuhi. Anomaly detection based on Artificial Intelligence of Things: A Systematic Literature Mapping. _Internet of Things_. 2024. Vol. 25, núm. 101063. [consulta: 8 de gener de 2026]. ISSN: 2542-6605. [Disponible a: https://hdl.handle.net/2445/209549]

Exportar metadades

JSON - METS

Compartir registre