Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Aitor Lucas Castellano i Noel Rabella Gras, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/183419

Deep learning for content-based indexing of TV programs

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] In recent years, deep neural networks have been successful in a lot of tasks in both industry and academia due to its scalability to mange large volumes of data and model parameters. Unfortunately, creating those large models and use their predictions can be computationally expensive to deploy on devices with limited resources. There is a TV channel called TV3 that wants to improve its recommendation engine without the mentioned impediments. In that thesis, we aim to solve part of that problem by using YOLO and Places to detect objects and scenes respectively, and build a smaller model able to learn from them and extract frame objects and scenes by itself. To do it, we have analyzed in depth Heterogeneous Classifiers (HC), that ensemble models with some different classes in a smaller model using a convex optimization approach. As HCs do not handle an scenario where classes differ completely between models, which is the TV3 case, we have implemented the smaller model following a label prediction approach by using RMSE and we have evaluated the model with ranking metrics as we have faced an unsupervised problem.

Descripció

Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2021. Tutor: Jordi Vitrià i Marca i Paula Gómez Duran

Citació

Citació

LUCAS CASTELLANO, Aitor, RABELLA GRAS, Noel. Deep learning for content-based indexing of TV programs. [consulta: 10 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/183419]

Exportar metadades

JSON - METS

Compartir registre