Deep learning for content-based indexing of TV programs

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.advisorGómez Duran, Paula
dc.contributor.authorLucas Castellano, Aitor
dc.contributor.authorRabella Gras, Noel
dc.date.accessioned2022-02-22T12:50:14Z
dc.date.available2022-02-22T12:50:14Z
dc.date.issued2021-07-01
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2021. Tutor: Jordi Vitrià i Marca i Paula Gómez Duranca
dc.description.abstract[en] In recent years, deep neural networks have been successful in a lot of tasks in both industry and academia due to its scalability to mange large volumes of data and model parameters. Unfortunately, creating those large models and use their predictions can be computationally expensive to deploy on devices with limited resources. There is a TV channel called TV3 that wants to improve its recommendation engine without the mentioned impediments. In that thesis, we aim to solve part of that problem by using YOLO and Places to detect objects and scenes respectively, and build a smaller model able to learn from them and extract frame objects and scenes by itself. To do it, we have analyzed in depth Heterogeneous Classifiers (HC), that ensemble models with some different classes in a smaller model using a convex optimization approach. As HCs do not handle an scenario where classes differ completely between models, which is the TV3 case, we have implemented the smaller model following a label prediction approach by using RMSE and we have evaluated the model with ranking metrics as we have faced an unsupervised problem.ca
dc.format.extent54 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/183419
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Aitor Lucas Castellano i Noel Rabella Gras, 2021
dc.rightscodi: GPL (c) Aitor Lucas Castellano i Noel Rabella Gras, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationXarxes neuronals convolucionals
dc.subject.classificationReconeixement de formes (Informàtica)
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationProgrames de televisióca
dc.subject.otherConvolutional neural networks
dc.subject.otherPattern recognition systems
dc.subject.otherLearning classifier systems
dc.subject.otherMaster's theses
dc.subject.otherTelevision programsen
dc.titleDeep learning for content-based indexing of TV programsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfm_aitor_lucas_noel_rabella.pdf
Mida:
6.47 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
uhc_distillation-main.zip
Mida:
1.21 MB
Format:
ZIP file
Descripció:
Codi font