Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192304

Dynamic Combination of Crowd Steering Policies Based on Context

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Simulating crowds requires controlling a very large number of trajectories of characters and is usually performed using crowd steering algorithms. The question of choosing the right algorithm with the right parameter values is of crucial importance given the large impact on the quality of results. In this paper, we study the performance of a number of steering policies (i.e., simulation algorithm and its parameters) in a variety of contexts, resorting to an existing quality function able to automatically evaluate simulation results. This analysis allows us to map contexts to the performance of steering policies. Based on this mapping, we demonstrate that distributing the best performing policies among characters improves the resulting simulations. Furthermore, we also propose a solution to dynamically adjust the policies, for each agent independently and while the simulation is running, based on the local context each agent is currently in. We demonstrate significant improvements of simulation results compared to previous work that would optimize parameters once for the whole simulation, or pick an optimized, but unique and static, policy for a given global simulation context.

Citació

Citació

CABRERO DANIEL, Beatriz, RODRIGUES SEPÚLVEDA MARQUES, Ricardo jorge, HOYET, Ludovic, PETTRÉ, Juliene, BLAT GIMENO, Josep. Dynamic Combination of Crowd Steering Policies Based on Context. _Computer Graphics Forum_. 2022. Vol. 41, núm. 2, pàgs. 209-219. [consulta: 23 de gener de 2026]. ISSN: 0167-7055. [Disponible a: https://hdl.handle.net/2445/192304]

Exportar metadades

JSON - METS

Compartir registre