Dynamic Combination of Crowd Steering Policies Based on Context

dc.contributor.authorCabrero Daniel, Beatriz
dc.contributor.authorRodrigues Sepúlveda Marques, Ricardo Jorge
dc.contributor.authorHoyet, Ludovic
dc.contributor.authorPettré, Juliene
dc.contributor.authorBlat Gimeno, Josep
dc.date.accessioned2023-01-18T10:31:42Z
dc.date.available2023-05-24T05:10:25Z
dc.date.issued2022-05-24
dc.date.updated2023-01-18T10:31:42Z
dc.description.abstractSimulating crowds requires controlling a very large number of trajectories of characters and is usually performed using crowd steering algorithms. The question of choosing the right algorithm with the right parameter values is of crucial importance given the large impact on the quality of results. In this paper, we study the performance of a number of steering policies (i.e., simulation algorithm and its parameters) in a variety of contexts, resorting to an existing quality function able to automatically evaluate simulation results. This analysis allows us to map contexts to the performance of steering policies. Based on this mapping, we demonstrate that distributing the best performing policies among characters improves the resulting simulations. Furthermore, we also propose a solution to dynamically adjust the policies, for each agent independently and while the simulation is running, based on the local context each agent is currently in. We demonstrate significant improvements of simulation results compared to previous work that would optimize parameters once for the whole simulation, or pick an optimized, but unique and static, policy for a given global simulation context.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725255
dc.identifier.issn0167-7055
dc.identifier.urihttps://hdl.handle.net/2445/192304
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1111/cgf.14469
dc.relation.ispartofComputer Graphics Forum, 2022, vol. 41, num. 2, p. 209-219
dc.relation.urihttps://doi.org/10.1111/cgf.14469
dc.rights(c) The Eurographics Association and John Wiley & Sons, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes multiagent
dc.subject.classificationSimulació per ordinador
dc.subject.classificationAlgorismes computacionals
dc.subject.otherMultiagent systems
dc.subject.otherComputer simulation
dc.subject.otherComputer algorithms
dc.titleDynamic Combination of Crowd Steering Policies Based on Context
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725255.pdf
Mida:
2.77 MB
Format:
Adobe Portable Document Format