Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-nc-nd (c) José Manuel López Camuñas, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/182392

Predictive maintenance using deep learning

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] The goal of this study is to demonstrate if failures reported in an aircraft can be related to the environmental conditions during operation time. The current study is the first step of a long-term predictive maintenance project driven by the company DMD Solutions. First of all, the concepts of reliability and predictive maintenance are introduced. Furthermore, the fundamentals of machine learning and the state of the art are detailed. Gathering quality data was a complex process, since the available data was incomplete, noisy and unbalanced. The analysis proposes and compares several solutions. Two different approaches were carried out: the first one consisted of the prediction of failure (binary classification), and the second one, more ambitious, the prediction of the time before the next defect using time intervals (multi-class classification). Both approaches were designed using an iterative process that improved quality of both models and data at each stage of the study. The obtained results were promising and encourage further research.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Simone Balocco

Citació

Citació

LÓPEZ CAMUÑAS, José manuel. Predictive maintenance using deep learning. [consulta: 10 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/182392]

Exportar metadades

JSON - METS

Compartir registre