Predictive maintenance using deep learning

dc.contributor.advisorBalocco, Simone
dc.contributor.authorLópez Camuñas, José Manuel
dc.date.accessioned2022-01-14T07:57:50Z
dc.date.available2022-01-14T07:57:50Z
dc.date.issued2021-06-20
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Simone Baloccoca
dc.description.abstract[en] The goal of this study is to demonstrate if failures reported in an aircraft can be related to the environmental conditions during operation time. The current study is the first step of a long-term predictive maintenance project driven by the company DMD Solutions. First of all, the concepts of reliability and predictive maintenance are introduced. Furthermore, the fundamentals of machine learning and the state of the art are detailed. Gathering quality data was a complex process, since the available data was incomplete, noisy and unbalanced. The analysis proposes and compares several solutions. Two different approaches were carried out: the first one consisted of the prediction of failure (binary classification), and the second one, more ambitious, the prediction of the time before the next defect using time intervals (multi-class classification). Both approaches were designed using an iterative process that improved quality of both models and data at each stage of the study. The obtained results were promising and encourage further research.ca
dc.format.extent76 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/182392
dc.language.isoesca
dc.rightsmemòria: cc-nc-nd (c) José Manuel López Camuñas, 2021
dc.rightscodi: GPL (c) José Manuel López Camuñas, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAvionsca
dc.subject.classificationManteniment industrialca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationAnàlisi de regressióca
dc.subject.otherAirplanesen
dc.subject.otherPlant maintenanceen
dc.subject.otherComputer softwareen
dc.subject.otherMachine learningen
dc.subject.otherRegression analysisen
dc.subject.otherBachelor's thesesen
dc.titlePredictive maintenance using deep learningca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
723.54 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_jose_manuel_lopez_camuñas.pdf
Mida:
4.21 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria