El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Leblanc, César et al.
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/224395

Learning the syntax of plant assemblages

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

To address the urgent biodiversity crisis, it is crucial to understand the nature of plant assemblages. The distribution of plant species is shaped not only by their broad environmental requirements but also by micro-environmental conditions, dispersal limitations, and direct and indirect species interactions. While predicting species composition and habitat type is essential for conservation and restoration purposes, it remains challenging. In this study, we propose an approach inspired by advances in large language models to learn the ‘syntax’ of abundance-ordered plant species sequences in communities. Our method, which captures latent associations between species across diverse ecosystems, can be fine-tuned for diverse tasks. In particular, we show that our methodology is able to outperform other approaches to (1) predict species that might occur in an assemblage given the other listed species, despite being originally missing in the species list (16.53% higher accuracy in retrieving a plant species removed from an assemblage than co-occurrence matrices and 6.56% higher than neural networks), and (2) classify habitat types from species assemblages (5.54% higher accuracy in assigning a habitat type to an assemblage than expert system classifiers and 1.14% higher than tabular deep learning). The proposed application has a vocabulary that covers over 10,000 plant species from Europe and adjacent countries and provides a powerful methodology for improving biodiversity mapping, restoration and conservation biology. As ecologists begin to explore the use of artificial intelligence, such approaches open opportunities for rethinking how we model, monitor and understand nature.

Citació

Citació

LEBLANC, César, BONNET, Pierre, SERVAJEAN, Maximilien, THUILLER, Wilfried, CHYTRÝ, Milan, AĆIĆ, Svetlana, ARGAGNON, Olivier, BIURRUN, Idoia, BONARI, Gianmaria, BRUELHEIDE, Helge, CAMPOS, Juan antonio, ČARNI, Andraž, ĆUŠTEREVSKA, Renata, DE SANCTIS, Michele, DENGLER, Jürgen, DZIUBA, Tetiana, GARBOLINO, Emmanuel, JANDT, Ute, JANSEN, Florian, LENOIR, Jonathan, MOESLUND, Jesper erenskjold, PÉREZ HAASE, Aaron, PIELECH, Remigiusz, SIBIK, Jozef, STANČIĆ, Zvjezdana, UOGINTAS, Domas, WOHLGEMUTH, Thomas, JOLY, Alexis. Learning the syntax of plant assemblages. _2025_. vol. 11. Vol. 10, núm. 2026-2040. [consulta: 2 de gener de 2026]. ISSN: 2055-026X. [Disponible a: https://hdl.handle.net/2445/224395]

Exportar metadades

JSON - METS

Compartir registre