Learning the syntax of plant assemblages

dc.contributor.authorLeblanc, César
dc.contributor.authorBonnet, Pierre
dc.contributor.authorServajean, Maximilien
dc.contributor.authorThuiller, Wilfried
dc.contributor.authorChytrý, Milan
dc.contributor.authorAćić, Svetlana
dc.contributor.authorArgagnon, Olivier
dc.contributor.authorBiurrun, Idoia
dc.contributor.authorBonari, Gianmaria
dc.contributor.authorBruelheide, Helge
dc.contributor.authorCampos, Juan Antonio
dc.contributor.authorČarni, Andraž
dc.contributor.authorĆušterevska, Renata
dc.contributor.authorDe Sanctis, Michele
dc.contributor.authorDengler, Jürgen
dc.contributor.authorDziuba, Tetiana
dc.contributor.authorGarbolino, Emmanuel
dc.contributor.authorJandt, Ute
dc.contributor.authorJansen, Florian
dc.contributor.authorLenoir, Jonathan
dc.contributor.authorMoeslund, Jesper Erenskjold
dc.contributor.authorPérez Haase, Aaron
dc.contributor.authorPielech, Remigiusz
dc.contributor.authorSibik, Jozef
dc.contributor.authorStančić, Zvjezdana
dc.contributor.authorUogintas, Domas
dc.contributor.authorWohlgemuth, Thomas
dc.contributor.authorJoly, Alexis
dc.date.accessioned2025-11-14T14:48:06Z
dc.date.available2025-11-14T14:48:06Z
dc.date.issued2025-10-13
dc.date.updated2025-11-14T14:48:06Z
dc.description.abstractTo address the urgent biodiversity crisis, it is crucial to understand the nature of plant assemblages. The distribution of plant species is shaped not only by their broad environmental requirements but also by micro-environmental conditions, dispersal limitations, and direct and indirect species interactions. While predicting species composition and habitat type is essential for conservation and restoration purposes, it remains challenging. In this study, we propose an approach inspired by advances in large language models to learn the ‘syntax’ of abundance-ordered plant species sequences in communities. Our method, which captures latent associations between species across diverse ecosystems, can be fine-tuned for diverse tasks. In particular, we show that our methodology is able to outperform other approaches to (1) predict species that might occur in an assemblage given the other listed species, despite being originally missing in the species list (16.53% higher accuracy in retrieving a plant species removed from an assemblage than co-occurrence matrices and 6.56% higher than neural networks), and (2) classify habitat types from species assemblages (5.54% higher accuracy in assigning a habitat type to an assemblage than expert system classifiers and 1.14% higher than tabular deep learning). The proposed application has a vocabulary that covers over 10,000 plant species from Europe and adjacent countries and provides a powerful methodology for improving biodiversity mapping, restoration and conservation biology. As ecologists begin to explore the use of artificial intelligence, such approaches open opportunities for rethinking how we model, monitor and understand nature.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec761777
dc.identifier.issn2055-026X
dc.identifier.urihttps://hdl.handle.net/2445/224395
dc.language.isoeng
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41477-025-02105-7
dc.relation.ispartof2025, vol. 11, num.10, p. 2026-2040
dc.relation.urihttps://doi.org/10.1038/s41477-025-02105-7
dc.rightscc-by (c) Leblanc, César et al.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)
dc.subject.classificationAssociacions vegetals
dc.subject.classificationHàbitat (Ecologia)
dc.subject.classificationBiodiversitat
dc.subject.otherPlant communities
dc.subject.otherHabitat (Ecology)
dc.subject.otherBiodiversity
dc.titleLearning the syntax of plant assemblages
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
904360.pdf
Mida:
3.66 MB
Format:
Adobe Portable Document Format

Paquet de llicències

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
license.txt
Mida:
1.71 KB
Format:
Item-specific license agreed upon to submission
Descripció: