El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Introduction to Berkovich spaces

dc.contributor.advisorSombra, Martín
dc.contributor.authorReig Fité, Oriol
dc.date.accessioned2024-12-09T09:12:09Z
dc.date.available2024-12-09T09:12:09Z
dc.date.issued2024-06-04
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Martín Sombraca
dc.description.abstractIn this Master Final Project I have studied Berkovich spaces, which is one of the existing approaches to non-Archimedean geometry, a branch that deals with analytic spaces over non-Archimedean fields. Let us first give some context on $p$-adic geometry and the necessity to develop such a theory of analytic spaces. Any norm gives rise to a metric space by setting the distance between two elements as the norm of their difference. In the case of a metric space induced by a non-Archimedean norm, the topological space is totally disconnected. For this reason, when we try to develop a theory of analytic functions similar that for the complex case (i.e., the Archimedean case), we encounter some notorious problems.ca
dc.format.extent68 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/216960
dc.language.isoengca
dc.rightscc by-nc-nd (c) Oriol Reig Fité, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationAnàlisi p-àdicacat
dc.subject.classificationEspais topològicscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationEspais analíticscat
dc.subject.otherp-adic analysiseng
dc.subject.otherTopological spaceseng
dc.subject.otherMaster's thesiseng
dc.subject.otherAnalytic spaceseng
dc.titleIntroduction to Berkovich spacesca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_reig_oriol.pdf
Mida:
664.09 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria