El Dipòsit Digital ha actualitzat el programari. Qualsevol incidència que trobeu si us plau contacteu amb dipositdigital@ub.edu.

 

Ulrich bundles and varieties of wild representation type

dc.contributor.advisorArrondo, Enrique
dc.contributor.advisorMiró-Roig, Rosa M. (Rosa Maria)
dc.contributor.authorPons Llopis, Joan
dc.contributor.otherUniversitat de Barcelona. Departament d'Àlgebra i Geometria
dc.date.accessioned2018-05-18T07:40:34Z
dc.date.available2018-05-18T07:40:34Z
dc.date.issued2011-06-21
dc.date.updated2018-05-18T07:40:34Z
dc.description.abstract[eng] The subject of this thesis lies at the junction of mainly three topics: construction of large families of Arithmetically Cohen-Macaulay indecomposable vector bundles on a given projective variety X, the shape (i.e, the graded Betti numbers) of the minimal free resolution of a general set of points onX and the (ir)reducibility of the Hilbert scheme Hilbs(X) of zero-dimensional subschemes Z (belongs) X of length s. (Fore more details see the Full Summary enclosed as a complementary file)
dc.format.extent162 p.
dc.format.mimetypeapplication/pdf
dc.identifier.tdxhttp://hdl.handle.net/10803/565411
dc.identifier.urihttps://hdl.handle.net/2445/122432
dc.language.isoeng
dc.publisherUniversitat de Barcelona
dc.rights(c) Pons, 2011
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceTesis Doctorals - Departament - Algebra i Geometria
dc.subject.classificationMòduls de Cohen-Macaulay
dc.subject.classificationEsquemes de Hilbert
dc.subject.otherCohen-Macaulay modules
dc.subject.otherHilbert schemes
dc.subject.otherInvariants
dc.titleUlrich bundles and varieties of wild representation type
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
JPLL_FULL SUMMARY.pdf
Mida:
130.38 KB
Format:
Adobe Portable Document Format
Carregant...
Miniatura
Nom:
JPLL_PhD-THESIS.pdf
Mida:
845.85 KB
Format:
Adobe Portable Document Format