Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/179888

Necessary Conditions for Interpolation by Multivariate Polynomials

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Let $\Omega$ be a smooth, bounded, convex domain in $\mathbb R^n$ and let $\Lambda_k$ be a finite subset of $\Omega$. We find necessary geometric conditions for $\Lambda_k$ to be interpolating for the space of multivariate polynomials of degree at most $k$. Our results are asymptotic in $k$. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and they are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for $k$ large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most $k$.

Citació

Citació

ANTEZANA, Jorge, MARZO SÁNCHEZ, Jordi, ORTEGA CERDÀ, Joaquim. Necessary Conditions for Interpolation by Multivariate Polynomials. _Computational Methods And Function Theory_. 2021. [consulta: 31 de gener de 2026]. ISSN: 1617-9447. [Disponible a: https://hdl.handle.net/2445/179888]

Exportar metadades

JSON - METS

Compartir registre