Necessary Conditions for Interpolation by Multivariate Polynomials

dc.contributor.authorAntezana, Jorge
dc.contributor.authorMarzo Sánchez, Jordi
dc.contributor.authorOrtega Cerdà, Joaquim
dc.date.accessioned2021-09-08T09:36:21Z
dc.date.available2022-08-30T05:10:19Z
dc.date.issued2021-08-30
dc.date.updated2021-09-08T09:36:21Z
dc.description.abstractLet $\Omega$ be a smooth, bounded, convex domain in $\mathbb R^n$ and let $\Lambda_k$ be a finite subset of $\Omega$. We find necessary geometric conditions for $\Lambda_k$ to be interpolating for the space of multivariate polynomials of degree at most $k$. Our results are asymptotic in $k$. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and they are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for $k$ large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most $k$.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec713790
dc.identifier.issn1617-9447
dc.identifier.urihttps://hdl.handle.net/2445/179888
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s40315-021-00410-8
dc.relation.ispartofComputational Methods And Function Theory, 2021
dc.relation.urihttps://doi.org/10.1007/s40315-021-00410-8
dc.rights(c) Springer Verlag, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnàlisi harmònica
dc.subject.classificationTeoria de l'aproximació
dc.subject.otherHarmonic analysis
dc.subject.otherApproximation theory
dc.titleNecessary Conditions for Interpolation by Multivariate Polynomials
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
713790.pdf
Mida:
352.21 KB
Format:
Adobe Portable Document Format