Co-benefits from sustainable dietary shifts for population and environmental health: an assessment from a large European cohort study

dc.contributor.authorLaine, Jessica E.
dc.contributor.authorHuybrechts, Inge
dc.contributor.authorGunter, Marc J.
dc.contributor.authorFerrari, Pietro
dc.contributor.authorWeiderpass, Elisabete
dc.contributor.authorTsilidis, Kostas
dc.contributor.authorAune, Dagfinn
dc.contributor.authorSchulze, Matthias B.
dc.contributor.authorBergmann, Manuela
dc.contributor.authorTemme, Elisabeth H. M.
dc.contributor.authorBoer, Jolanda M. A.
dc.contributor.authorAgnoli, Claudia
dc.contributor.authorEricson, Ulrika
dc.contributor.authorStubbendorff, Anna
dc.contributor.authorIbsen, Daniel B.
dc.contributor.authorDahm, Christina C.
dc.contributor.authorDeschasaux, Mélanie
dc.contributor.authorTouvier, Mathilde
dc.contributor.authorKesse Guyot, Emmanuelle
dc.contributor.authorSánchez Pérez, María José
dc.contributor.authorRodríguez Barranco, Miguel
dc.contributor.authorTong, Tammy Y. N.
dc.contributor.authorPapier, Keren
dc.contributor.authorKnuppel, Anika
dc.contributor.authorBoutron-Ruault, Marie-Christine
dc.contributor.authorMancini, Francesca
dc.contributor.authorSeveri, Gianluca
dc.contributor.authorSrour, Bernard
dc.contributor.authorKühn, Tilman
dc.contributor.authorMasala, Giovanna
dc.contributor.authorAgudo, Antonio
dc.contributor.authorSkeie, Guri
dc.contributor.authorRylander, Charlotta
dc.contributor.authorSandanger, Torkjel M.
dc.contributor.authorRiboli, Elio
dc.contributor.authorVineis, Paolo
dc.date.accessioned2021-12-13T11:44:15Z
dc.date.available2021-12-13T11:44:15Z
dc.date.issued2021-10-01
dc.date.updated2021-12-10T09:51:19Z
dc.description.abstractBackground Unhealthy diets, the rise of non-communicable diseases, and the declining health of the planet are highly intertwined, where food production and consumption are major drivers of increases in greenhouse gas emissions, substantial land use, and adverse health such as cancer and mortality. To assess the potential co-benefits from shifting to more sustainable diets, we aimed to investigate the associations of dietary greenhouse gas emissions and land use with all-cause and cause-specific mortality and cancer incidence rates. Methods Using data from 443 991 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, a multicentre prospective cohort, we estimated associations between dietary contributions to greenhouse gas emissions and land use and all-cause and cause-specific mortality and incident cancers using Cox proportional hazards regression models. The main exposures were modelled as quartiles. Co-benefits, encompassing the potential effects of alternative diets on all-cause mortality and cancer and potential reductions in greenhouse gas emissions and land use, were estimated with counterfactual attributable fraction intervention models, simulating potential effects of dietary shifts based on the EAT-Lancet reference diet. Findings In the pooled analysis, there was an association between levels of dietary greenhouse gas emissions and all-cause mortality (adjusted hazard ratio [HR] 1.13 [95% CI 1.10-1.16]) and between land use and all-cause mortality (1.18 [1.15-1.21]) when comparing the fourth quartile to the first quartile. Similar associations were observed for cause-specific mortality. Associations were also observed between all-cause cancer incidence rates and greenhouse gas emissions, when comparing the fourth quartile to the first quartile (adjusted HR 1.11 [95% CI 1.09-1.14]) and between all-cause cancer incidence rates and land use (1.13 [1.10-1.15]); however, estimates differed by cancer type. Through counterfactual attributable fraction modelling of shifts in levels of adherence to the EAT-Lancet diet, we estimated that up to 19-63% of deaths and up to 10-39% of cancers could be prevented, in a 20-year risk period, by different levels of adherence to the EAT-Lancet reference diet. Additionally, switching from lower adherence to the EAT-Lancet reference diet to higher adherence could potentially reduce food-associated greenhouse gas emissions up to 50% and land use up to 62%. Interpretation Our results indicate that shifts towards universally sustainable diets could lead to co-benefits, such as minimising diet-related greenhouse gas emissions and land use, reducing the environmental footprint, aiding in climate change mitigation, and improving population health.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/181794
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/S2542-5196(21)00250-3
dc.relation.ispartofThe Lancet Planetary Health, 2021, vol. 5, num. 11, p. e786-e796
dc.relation.urihttps://doi.org/10.1016/S2542-5196(21)00250-3
dc.rightscc by (c) Laine, Jessica E. et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationAssaigs clínics
dc.subject.classificationCanvi climàtic
dc.subject.classificationSalut pública
dc.subject.classificationDieta
dc.subject.otherClinical trials
dc.subject.otherClimatic change
dc.subject.otherPublic health
dc.subject.otherDiet
dc.titleCo-benefits from sustainable dietary shifts for population and environmental health: an assessment from a large European cohort study
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
PIIS2542519621002503.pdf
Mida:
799.54 KB
Format:
Adobe Portable Document Format