Epigenetic age deacceleration in youth at familial risk for schizophrenia and bipolar disorder

dc.contributor.authorSegura, Alex G.
dc.contributor.authorde la Serna Gómez, Elena
dc.contributor.authorSugranyes, Gisela
dc.contributor.authorBaeza, Inmaculada, 1970-
dc.contributor.authorValli, Isabel
dc.contributor.authorDíaz Caneja, Covadonga M.
dc.contributor.authorMartín Martínez, Nuria
dc.contributor.authorMoreno, Dolores
dc.contributor.authorGassó Astorga, Patricia
dc.contributor.authorRodríguez Ferret, Natalia
dc.contributor.authorMas Herrero, Sergi
dc.contributor.authorCastro Fornieles, Josefina
dc.date.accessioned2025-02-28T14:13:15Z
dc.date.available2025-02-28T14:13:15Z
dc.date.issued2023-05-08
dc.date.updated2025-02-28T14:13:16Z
dc.description.abstractEpigenetic modifications occur sequentially during the lifespan, but their pace can be altered by external stimuli. The onset of schizophrenia and bipolar disorder is critically modulated by stressors that may alter the epigenetic pattern, a putative signature marker of exposure to environmental risk factors. In this study, we estimated the age-related epigenetic modifications to assess the differences between young individuals at familial high risk (FHR) and controls and their association with environmental stressors. The sample included 117 individuals (6-17 years) at FHR (45%) and a control group (55%). Blood and saliva samples were used estimate the epigenetic age with six epigenetic clocks through methylation data. Environmental risk was measured with obstetric complications, socioeconomic statuses and recent stressful life events data. Epigenetic age was correlated with chronological age. FHR individuals showed epigenetic age deacceleration of Horvath and Hannum epigenetic clocks compared to controls. No effect of the environmental risk factors on the epigenetic age acceleration could be detected. Epigenetic age acceleration adjusted by cell counts showed that the FHR group was deaccelerated also with the PedBE epigenetic clock. Epigenetic age asynchronicities were found in the young at high risk, suggesting that offspring of affected parents follow a slower pace of biological aging than the control group. It still remains unclear which environmental stressors orchestrate the changes in the methylation pattern. Further studies are needed to better characterize the molecular impact of environmental stressors before illness onset, which could be critical in the development of tools for personalized psychiatry.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec737845
dc.identifier.issn2158-3188
dc.identifier.pmid37156786
dc.identifier.urihttps://hdl.handle.net/2445/219355
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41398-023-02463-w
dc.relation.ispartofTranslational Psychiatry, 2023, vol. 13, num.1
dc.relation.urihttps://doi.org/10.1038/s41398-023-02463-w
dc.rightscc-by (c) Segura, Alex G. et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0*
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationAdolescents
dc.subject.classificationEsquizofrènia
dc.subject.classificationFactors de risc en les malalties
dc.subject.classificationEpigenètica
dc.subject.classificationTrastorn bipolar
dc.subject.otherTeenagers
dc.subject.otherSchizophrenia
dc.subject.otherRisk factors in diseases
dc.subject.otherEpigenetics
dc.subject.otherManic-depressive illness
dc.titleEpigenetic age deacceleration in youth at familial risk for schizophrenia and bipolar disorder
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
824430.pdf
Mida:
1.36 MB
Format:
Adobe Portable Document Format