Long-time evolution of quantum systems with Tensor Network techniques

dc.contributor.advisorCarignano, Stefano
dc.contributor.authorFarreras Bartra, Marc
dc.date.accessioned2024-09-17T12:46:10Z
dc.date.available2024-09-17T12:46:10Z
dc.date.issued2024-08
dc.descriptionMàster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2023-2024. Tutor: Stefano Carignanoca
dc.description.abstractOne of the most significant challenges in simulating the dynamics of manybody quantum systems is the exponential increase in computational complexity, driven by the linear growth of entanglement during time evolution. In this work, we explore a novel algorithm designed to mitigate this complexity by identifying and trading the entanglement by mixture, i.e. depurifying the originally pure closed-system state. This approach preserves the essential local information necessary for computing expectation values, while effectively reducing the computational resources. Additionally, we propose a method for performing time evolution with the resulting mixed states, highlighting both the strengths and limitations of this approach. We also discuss potential avenues for future improvements to enhance the efficiency and applicability of this method.ca
dc.format.extent45 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/215211
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Farreras, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology
dc.subject.classificationXarxes tensorials
dc.subject.classificationComplexitat computacional
dc.subject.classificationTreballs de fi de màster
dc.subject.otherTensor network
dc.subject.otherComputational complexity
dc.subject.otherMaster's thesis
dc.titleLong-time evolution of quantum systems with Tensor Network techniqueseng
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
FARRERAS I BARTRA MARC.pdf
Mida:
2.25 MB
Format:
Adobe Portable Document Format
Descripció: