A multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems.

dc.contributor.authorPetre, Bogdan
dc.contributor.authorKragel, Philip
dc.contributor.authorAtlas, Lauren Y.
dc.contributor.authorGeuter, Stephan
dc.contributor.authorJepma, Marieke
dc.contributor.authorKoban, Leonie
dc.contributor.authorKrishnan, Anjali
dc.contributor.authorLópez-Solà, Marina
dc.contributor.authorRoy, Mathieu
dc.contributor.authorWoo, Choong-Wan
dc.contributor.authorWager, Tor D.
dc.date.accessioned2022-11-16T17:27:23Z
dc.date.available2022-11-16T17:27:23Z
dc.date.issued2022-05-02
dc.date.updated2022-11-16T17:27:23Z
dc.description.abstractInformation is coded in the brain at multiple anatomical scales: locally, distributed across regions and networks, and globally. For pain, the scale of representation has not been formally tested, and quantitative comparisons of pain representations across regions and networks are lacking. In this multistudy analysis of 376 participants across 11 studies, we compared multivariate predictive models to investigate the spatial scale and location of evoked heat pain intensity representation. We compared models based on (a) a single most pain-predictive region or resting-state network; (b) pain-associated cortical-subcortical systems developed from prior literature ('multisystem models'); and (c) a model spanning the full brain. We estimated model accuracy using leave-one-study-out cross-validation (CV; 7 studies) and subsequently validated in 4 independent holdout studies. All spatial scales conveyed information about pain intensity, but distributed, multisystem models predicted pain 20% more accurately than any individual region or network and were more generalizable to multimodal pain (thermal, visceral, and mechanical) and specific to pain. Full brain models showed no predictive advantage over multisystem models. These findings show that multiple cortical and subcortical systems are needed to decode pain intensity, especially heat pain, and that representation of pain experience may not be circumscribed by any elementary region or canonical network. Finally, the learner generalization methods we employ provide a blueprint for evaluating the spatial scale of information in other domains.
dc.format.extent29 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec726329
dc.identifier.issn1544-9173
dc.identifier.pmid35500023
dc.identifier.urihttps://hdl.handle.net/2445/190779
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pbio.3001620
dc.relation.ispartofPLoS Biology, 2022, vol. 20, num. 5, p. e3001620
dc.relation.urihttps://doi.org/10.1371/journal.pbio.3001620
dc.rightscc-by (c) Petre, Bogdan et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationDolor
dc.subject.classificationSofriment
dc.subject.classificationEvolució del cervell
dc.subject.classificationImatges per ressonància magnètica
dc.subject.classificationSinapsi
dc.subject.classificationXarxes neuronals (Neurobiologia)
dc.subject.classificationAprenentatge automàtic
dc.subject.otherPain
dc.subject.otherSuffering
dc.subject.otherEvolution of the brain
dc.subject.otherMagnetic resonance imaging
dc.subject.otherSynapses
dc.subject.otherNeural networks (Neurobiology)
dc.subject.otherMachine learning
dc.titleA multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
726329.pdf
Mida:
2.86 MB
Format:
Adobe Portable Document Format