Comparative analysis of state-of-the-art deep-learning based face editing algorithms

dc.contributor.advisorRadeva, Petia
dc.contributor.advisorAghaei, Maya
dc.contributor.authorRuiz Ávila, María
dc.date.accessioned2024-11-29T09:47:33Z
dc.date.available2024-11-29T09:47:33Z
dc.date.issued2024-06-10
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Petia Radeva i Maya Aghaeica
dc.description.abstract[en] Facial attribute transformation, which involves manipulating specific facial features in images and videos, has become a focal point in computer vision and image processing. This project conducts a comprehensive comparative analysis of cutting-edge methodologies, utilizing diverse models to modify latent imagery representations. We assess various state-of-the-art techniques in facial attribute editing through quantitative, qualitative, and efficiency metrics. Our study demonstrates the superior efficacy of an innovative approach using the Multi-Attribute Latent Transformer Model, which adeptly learns and modifies multiple facial attributes simultaneously. This model not only enhances operational efficiency but also maintains the authenticity and integrity of facial identities. Additionally, we investigate how the correlation of attributes in the training images introduces bias in the results. As part of the project, we have developed a user interface that allows for the visual comparison of four models. This application enables users to observe and compare the distinctions and effectiveness of each model side-by-side. In summary, this research advances the field of facial attribute modification by presenting an in-depth comparative study that highlights the strengths and limitations of leading methodologies in face editing, thereby laying the groundwork for future innovations in refined and scalable facial image transformation.ca
dc.format.extent96 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/216830
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) María Ruiz Ávila, 2024
dc.rightscodi: GPL (c) María Ruiz Ávila, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationVisió per ordinadorca
dc.subject.classificationReconeixement facial (Informàtica)ca
dc.subject.classificationProcessament digital d'imatgesca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.otherMachine learningen
dc.subject.otherComputer visionen
dc.subject.otherHuman face recognition (Computer science)en
dc.subject.otherDigital image processingen
dc.subject.otherComputer softwareen
dc.subject.otherBachelor's thesesen
dc.subject.otherNeural networks (Computer science)en
dc.titleComparative analysis of state-of-the-art deep-learning based face editing algorithmsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfg_ruiz_avila_maria.pdf
Mida:
12.52 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
MariaRuizAvila-codi.zip
Mida:
11.18 MB
Format:
ZIP file
Descripció:
Codi font