Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Gispert, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/194268

Estimating spectroscopic ages of red-giant stars using machine learning

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Over the last few years, many studies have found an empirical relation between the abundance of a star and its age, rather well known as chemical tagging. Here we estimate spectroscopic stellar ages for 197.000 stars observed by the APOGEE survey. To this end, we use the supervised machine learning technique XGBoost, trained on a set of 3314 stars with asteroseismic ages observed by both APOGEE and Kepler (Miglio et al. 2021). Eventually, to verify the obtained age estimates, we investigated the chemical, kinematic and positional relationship of the stars in respect to their age.

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022-2023, Tutor: Friedrich Anders

Citació

Citació

GISPERT LATORRE, Pol. Estimating spectroscopic ages of red-giant stars using machine learning. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/194268]

Exportar metadades

JSON - METS

Compartir registre