Estimating spectroscopic ages of red-giant stars using machine learning

dc.contributor.advisorAnders, Friedrich
dc.contributor.authorGispert Latorre, Pol
dc.date.accessioned2023-02-27T17:55:13Z
dc.date.available2023-02-27T17:55:13Z
dc.date.issued2023-01
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022-2023, Tutor: Friedrich Andersca
dc.description.abstractOver the last few years, many studies have found an empirical relation between the abundance of a star and its age, rather well known as chemical tagging. Here we estimate spectroscopic stellar ages for 197.000 stars observed by the APOGEE survey. To this end, we use the supervised machine learning technique XGBoost, trained on a set of 3314 stars with asteroseismic ages observed by both APOGEE and Kepler (Miglio et al. 2021). Eventually, to verify the obtained age estimates, we investigated the chemical, kinematic and positional relationship of the stars in respect to their age.ca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/194268
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Gispert, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationEvolució estel·larcat
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherStellar evolutioneng
dc.subject.otherMachine learningeng
dc.subject.otherBachelor's theseseng
dc.titleEstimating spectroscopic ages of red-giant stars using machine learningeng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
GISPERT LATORRE POL_7074611.pdf
Mida:
2.02 MB
Format:
Adobe Portable Document Format
Descripció: