A Methodological Framework for AI-Driven Textual Data Analysis in Digital Media

dc.contributor.authorCordeiro, Douglas
dc.contributor.authorLopezosa, Carlos
dc.contributor.authorGuallar, Javier
dc.date.accessioned2026-01-23T12:25:50Z
dc.date.available2026-01-23T12:25:50Z
dc.date.issued2025-02-03
dc.date.updated2026-01-23T12:25:50Z
dc.description.abstractThe growing volume of textual data generated on digital media platforms presents significant challenges for the analysis and interpretation of information. This article proposes a methodological approach that combines artificial intelligence (AI) techniques and statistical methods to explore and analyze textual data from digital media. The framework, titled DAFIM (Data Analysis Framework for Information and Media), includes strategies for data collection through APIs and web scraping, textual data processing, and data enrichment using AI solutions, including named entity recognition (people, locations, objects, and brands) and the detection of clickbait in news. Sentiment analysis and text clustering techniques are integrated to support content analysis. The potential applications of this methodology include social networks, news aggregators, news portals, and newsletters, offering a robust framework for studying digital data and supporting informed decision-making. The proposed framework is validated through a case study involving data extracted from the Google News aggregation platform, focusing on the Israel–Lebanon conflict. This demonstrates the framework’s capability to uncover narrative patterns, content trends, and clickbait detection while also highlighting its advantages and limitations.</span>
dc.format.extent26 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec754099
dc.identifier.urihttps://hdl.handle.net/2445/226029
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/fi17020059
dc.relation.ispartofFuture Internet, 2025
dc.relation.urihttps://doi.org/10.3390/fi17020059
dc.rightscc-by (c) Douglas Cordeiro et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.classificationIntel·ligència artificial
dc.subject.otherArtificial intelligence
dc.titleA Methodological Framework for AI-Driven Textual Data Analysis in Digital Media
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
877954.pdf
Mida:
1.44 MB
Format:
Adobe Portable Document Format