El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Towards High Quality Single-cell Experiments: Approaches, Applications and Performance

dc.contributor.advisorHeyn, Holger
dc.contributor.advisorGut, Ivo
dc.contributor.authorLafzi, Atefeh
dc.contributor.otherUniversitat de Barcelona. Departament de Genètica
dc.date.accessioned2021-07-15T06:58:41Z
dc.date.available2021-07-15T06:58:41Z
dc.date.issued2020-05-29
dc.description.abstract[eng] Single-cell RNA sequencing has revolutionized the way molecular mechanisms were being studied by allowing the dissection of gene expression at single-cell resolution. The data acquired from scRNA-seq provides great opportunities for scientist to push the limits and go beyond technological boundaries to address biological questions. However, a thoroughly thought experimental design, protocol selection and data analysis strategies are necessary to get the best out of this high potential technology. In this thesis we start with summarizing current methodological and analytical options, and discuss their suitability for a range of research scenarios. We provide information about best practices in every step from separating cells and RNA library preparation to data generation, normalization and analysis. Next, we try to address a biological phenomenon using scRNA-seq. We demonstrate how a correctly designed scRNA-seq experiment and analysis is able to capture in details the process of dermal fibroblast aging. Observing the data produced by different scRNA-seq protocols, their important differences and the challenge to analyse them together, raised the question of their suitability specially in cell atlas projects. Hence, in a big multi-center systematic study we compared 13 commonly used single-cell and single-nucleus RNA-seq protocols using a highly heterogeneous reference sample resource. We pointed at their accuracy, application across distinct cell properties, potential to disclose tissue heterogeneity, reproducibility and integratability with other methods; features in which should be considered when defining guidelines and standards for international consortia, such as the Human Cell Atlas project. Finally, we propose an approach to elevate the data from poor-performing protocols to the quality of the best data coming from best-performing ones using variational autoencoders and vector arithmetic.ca
dc.format.extent177 p.
dc.format.mimetypeapplication/pdf
dc.identifier.tdxhttp://hdl.handle.net/10803/672157
dc.identifier.urihttps://hdl.handle.net/2445/179008
dc.language.isoengca
dc.publisherUniversitat de Barcelona
dc.rights(c) Lafzi, Atefeh, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.sourceTesis Doctorals - Departament - Genètica
dc.subject.classificationGenòmica
dc.subject.classificationExpressió gènica
dc.subject.classificationReferenciació (Economia)
dc.subject.classificationAprenentatge automàtic
dc.subject.otherGenomics
dc.subject.otherGene expression
dc.subject.otherBenchmarking (Management)
dc.subject.otherMachine learning
dc.titleTowards High Quality Single-cell Experiments: Approaches, Applications and Performanceca
dc.typeinfo:eu-repo/semantics/doctoralThesisca
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
ATEFEH LAFZI_PhD_THESIS.pdf
Mida:
21.52 MB
Format:
Adobe Portable Document Format
Descripció: