Sumsets and projective curves

dc.contributor.authorElías García, Joan
dc.date.accessioned2024-07-11T07:56:06Z
dc.date.available2024-07-11T07:56:06Z
dc.date.issued2022-06-25
dc.date.updated2024-07-11T07:56:11Z
dc.description.abstractThe aim of this note is to exploit a new relationship between additive combinatorics and the geometry of monomial projective curves. We associate to a finite set of non-negative integers $A=\left\{a_1, \ldots, a_n\right\}$ a monomial projective curve $C_A \subset \mathbb{P}_{\mathbf{k}}^{n-1}$ such that the Hilbert function of $C_A$ and the cardinalities of $s A:=\left\{a_{i_1}+\cdots+a_{i_s} \mid 1 \leq i_1 \leq \cdots \leq i_s \leq n\right\}$ agree. The singularities of $C_A$ determines the asymptotic behaviour of $|s A|$, equivalently the Hilbert polynomial of $C_A$, and the asymptotic structure of $S A$. We show that some additive inverse problems can be translate to the rigidity of Hilbert polynomials and we improve an upper bound of the Castelnuovo-Mumford regularity of monomial projective curves by using results of additive combinatorics.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec749375
dc.identifier.issn1660-5446
dc.identifier.urihttps://hdl.handle.net/2445/214510
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00009-022-02108-0
dc.relation.ispartofMediterranean Journal of Mathematics, 2022, vol. 19
dc.relation.urihttps://doi.org/10.1007/s00009-022-02108-0
dc.rightscc-by (c) Joan Elias García, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationÀlgebra commutativa
dc.subject.classificationSuccessions (Matemàtica)
dc.subject.classificationCorbes algebraiques
dc.subject.otherCommutative algebra
dc.subject.otherSequences (Mathematics)
dc.subject.otherAlgebraic curves
dc.titleSumsets and projective curves
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
863305.pdf
Mida:
359.69 KB
Format:
Adobe Portable Document Format