Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier, 2015
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/97324

A self-organizing map analysis of survey-based agents' expectations before impending shocks for model selection: The case of the 2008 financial crisis

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This paper examines the role of clustering techniques to assist in the selection of the most indicated method to model survey-based expectations. First, relying on a Self-Organizing Map (SOM) analysis and using the financial crisis of 2008 as a benchmark, we distinguish between countries that show a progressive anticipation of the crisis, and countries where sudden changes in expectations occur. We then generate predictions of survey indicators, which are usually used as explanatory variables in econometric models. We compare the forecasting performance of a multi-layer perceptron (MLP) Artificial Neural Network (ANN) model to that of three different time series models. By combining both types of analysis, we find that ANN models outperform time series models in countries in which the evolution of expectations shows brisk changes before impending shocks. Conversely, in countries where expectations follow a smooth transition towards recession, autoregressive integrated moving-average (ARIMA) models outperform neural networks.

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. A self-organizing map analysis of survey-based agents' expectations before impending shocks for model selection: The case of the 2008 financial crisis. _International Economics_. 2016. Vol. 146, núm. 40-58. [consulta: 21 de gener de 2026]. ISSN: 2110-7017. [Disponible a: https://hdl.handle.net/2445/97324]

Exportar metadades

JSON - METS

Compartir registre