Volume fluctuations of random analytic varieties in the unit ball

dc.contributor.authorMassaneda Clares, Francesc Xavier
dc.contributor.authorPridhnani, Bharti
dc.date.accessioned2023-01-24T10:31:56Z
dc.date.available2023-01-24T10:31:56Z
dc.date.issued2015-11-23
dc.date.updated2023-01-24T10:31:56Z
dc.description.abstractGiven a Gaussian analytic function $f_L$ of intesity $L$ in the unit ball of $\mathbb{C}^n, n \geq 2$, consider its (random) zero variety $Z\left(f_L\right)$. We reduce the variance of the $(n-1)$-dimensional volume of $Z\left(f_L\right)$ inside a pseudo-hyperbolic ball of radius $r$ to an integral of a positive function in the unit disk. We illustrate the usefulness of this expression by describing the asymptotic behaviour of the variance as $r \rightarrow 1^{-}$and as $L \rightarrow \infty$. Both the results and the proofs generalise to the ball those given by Jeremiah Buckley for the unit disk.
dc.format.extent29 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec644426
dc.identifier.issn0022-2518
dc.identifier.urihttps://hdl.handle.net/2445/192549
dc.language.isoeng
dc.publisherIndiana University
dc.relation.isformatofVersió preprint del document publicat a: https://www.jstor.org/stable/26316201
dc.relation.ispartofIndiana University Mathematics Journal, 2015, vol. 64, num. 6, p. 1667-1695
dc.rights(c) Indiana University Mathematics Journal, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEspais analítics
dc.subject.classificationProcessos gaussians
dc.subject.otherAnalytic spaces
dc.subject.otherGaussian processes
dc.titleVolume fluctuations of random analytic varieties in the unit ball
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
644426.pdf
Mida:
226.49 KB
Format:
Adobe Portable Document Format