Volume fluctuations of random analytic varieties in the unit ball
| dc.contributor.author | Massaneda Clares, Francesc Xavier | |
| dc.contributor.author | Pridhnani, Bharti | |
| dc.date.accessioned | 2023-01-24T10:31:56Z | |
| dc.date.available | 2023-01-24T10:31:56Z | |
| dc.date.issued | 2015-11-23 | |
| dc.date.updated | 2023-01-24T10:31:56Z | |
| dc.description.abstract | Given a Gaussian analytic function $f_L$ of intesity $L$ in the unit ball of $\mathbb{C}^n, n \geq 2$, consider its (random) zero variety $Z\left(f_L\right)$. We reduce the variance of the $(n-1)$-dimensional volume of $Z\left(f_L\right)$ inside a pseudo-hyperbolic ball of radius $r$ to an integral of a positive function in the unit disk. We illustrate the usefulness of this expression by describing the asymptotic behaviour of the variance as $r \rightarrow 1^{-}$and as $L \rightarrow \infty$. Both the results and the proofs generalise to the ball those given by Jeremiah Buckley for the unit disk. | |
| dc.format.extent | 29 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 644426 | |
| dc.identifier.issn | 0022-2518 | |
| dc.identifier.uri | https://hdl.handle.net/2445/192549 | |
| dc.language.iso | eng | |
| dc.publisher | Indiana University | |
| dc.relation.isformatof | Versió preprint del document publicat a: https://www.jstor.org/stable/26316201 | |
| dc.relation.ispartof | Indiana University Mathematics Journal, 2015, vol. 64, num. 6, p. 1667-1695 | |
| dc.rights | (c) Indiana University Mathematics Journal, 2015 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Espais analítics | |
| dc.subject.classification | Processos gaussians | |
| dc.subject.other | Analytic spaces | |
| dc.subject.other | Gaussian processes | |
| dc.title | Volume fluctuations of random analytic varieties in the unit ball | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/submittedVersion |
Fitxers
Paquet original
1 - 1 de 1