Dynamics of the Secant map near infinity

dc.contributor.authorGarijo, Antonio
dc.contributor.authorJarque i Ribera, Xavier
dc.date.accessioned2022-09-28T08:49:54Z
dc.date.available2023-03-07T06:10:26Z
dc.date.issued2022-03-07
dc.date.updated2022-09-28T08:49:55Z
dc.description.abstractWe investigate the root finding algorithm given by the secant method applied to a real polynomial $p$ of degree $k$ as a discrete dynamical system defined on $\mathbb R^2$. We extend the secant map to the real projective plane $\mathbb {R P}^2$. The line at infinity $\ell_{\infty}$ is invariant, and there is one (if $k$ is odd) or two (if $k$ is even) fixed points at $\ell_{\infty}$. We show that these are of saddle type, and this allows us to better understand the dynamics of the secant map near infinity.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725146
dc.identifier.issn1023-6198
dc.identifier.urihttps://hdl.handle.net/2445/189352
dc.language.isoeng
dc.publisherTaylor and Francis
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1080/10236198.2022.2044476
dc.relation.ispartofJournal of Difference Equations and Applications, 2022, vol. 28, num. 10, p. 1334-1347
dc.relation.urihttps://doi.org/10.1080/10236198.2022.2044476
dc.rights(c) Taylor and Francis, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria de la bifurcació
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.classificationAnàlisi numèrica
dc.subject.otherBifurcation theory
dc.subject.otherDifferentiable dynamical systems
dc.subject.otherNumerical analysis
dc.titleDynamics of the Secant map near infinity
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725146.pdf
Mida:
632.84 KB
Format:
Adobe Portable Document Format