Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment

dc.contributor.authorMarcos Zambrano, Laura Judith
dc.contributor.authorKaraduzovic-Hadziabdic, Kanita
dc.contributor.authorLoncar Turukalo, Tatjana
dc.contributor.authorPrzymus, Piotr
dc.contributor.authorTrajkovik, Vladimir
dc.contributor.authorAasmets, Oliver
dc.contributor.authorBerland, Magali
dc.contributor.authorGruca, Aleksandra
dc.contributor.authorHasic, Jasminka
dc.contributor.authorHron, Karel
dc.contributor.authorKlammsteiner, Thomas
dc.contributor.authorKolev, Mikhail
dc.contributor.authorLahti, Leo
dc.contributor.authorLopes, Marta B.
dc.contributor.authorMoreno Aguado, Víctor
dc.contributor.authorNaskinova, Irina
dc.contributor.authorOrg, Elin
dc.contributor.authorPaciência, Inês
dc.contributor.authorPapoutsoglou, Georgios
dc.contributor.authorShigdel, Rajesh
dc.contributor.authorStres, Blaz
dc.contributor.authorVilne, Baiba
dc.contributor.authorYousef, Malik
dc.contributor.authorZdravevski, Eftim
dc.contributor.authorTsamardinos, Ioannis
dc.contributor.authorCarrillo de Santa Pau, Enrique
dc.contributor.authorClaesson, Marcus J.
dc.contributor.authorMoreno Indias, Isabel
dc.contributor.authorTruu, Jaak
dc.date.accessioned2021-04-12T09:46:18Z
dc.date.available2021-04-12T09:46:18Z
dc.date.issued2021-02-19
dc.date.updated2021-04-08T07:36:23Z
dc.description.abstractThe number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.
dc.format.extent25 p.
dc.format.mimetypeapplication/pdf
dc.identifier.pmid33737920
dc.identifier.urihttps://hdl.handle.net/2445/176179
dc.language.isoeng
dc.publisherFrontiers Media S. A.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fmicb.2021.634511
dc.relation.ispartofFrontiers in Microbiology, 2021, vol. 12
dc.relation.urihttps://doi.org/10.3389/fmicb.2021.634511
dc.rightscc by (c) Marcos Zambrano et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Ciències Clíniques)
dc.subject.classificationMicrobiota
dc.subject.classificationFactors de risc en les malalties
dc.subject.classificationAprenentatge automàtic
dc.subject.otherMicrobiota
dc.subject.otherRisk factors in diseases
dc.subject.otherMachine learning
dc.titleApplications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
fmicb-12-634511.pdf
Mida:
5.1 MB
Format:
Adobe Portable Document Format