Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/164373

A bound on the number of rationally invisible repelling orbits

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We consider entire transcendental maps with bounded set of singular values such that periodic rays exist and land. For such maps, we prove a refined version of the Fatou-Shishikura inequality which takes into account rationally invisible periodic orbits, that is, repelling cycles which are not landing points of any periodic ray. More precisely, if there are $q<\infty$ singular orbits, then the sum of the number of attracting, parabolic, Siegel, Cremer or rationally invisible orbits is bounded above by $q$. In particular, there are at most $q$ rationally invisible repelling periodic orbits. The techniques presented here also apply to the more general setting in which the function is allowed to have infinitely many singular values.

Citació

Citació

BENINI, Anna miriam, FAGELLA RABIONET, Núria. A bound on the number of rationally invisible repelling orbits. _Advances in Mathematics_. 2020. Vol. 370. [consulta: 24 de gener de 2026]. ISSN: 0001-8708. [Disponible a: https://hdl.handle.net/2445/164373]

Exportar metadades

JSON - METS

Compartir registre