A bound on the number of rationally invisible repelling orbits
| dc.contributor.author | Benini, Anna Miriam | |
| dc.contributor.author | Fagella Rabionet, Núria | |
| dc.date.accessioned | 2020-06-05T07:00:56Z | |
| dc.date.available | 2022-08-26T05:10:21Z | |
| dc.date.issued | 2020-08-26 | |
| dc.date.updated | 2020-06-05T07:00:56Z | |
| dc.description.abstract | We consider entire transcendental maps with bounded set of singular values such that periodic rays exist and land. For such maps, we prove a refined version of the Fatou-Shishikura inequality which takes into account rationally invisible periodic orbits, that is, repelling cycles which are not landing points of any periodic ray. More precisely, if there are $q<\infty$ singular orbits, then the sum of the number of attracting, parabolic, Siegel, Cremer or rationally invisible orbits is bounded above by $q$. In particular, there are at most $q$ rationally invisible repelling periodic orbits. The techniques presented here also apply to the more general setting in which the function is allowed to have infinitely many singular values. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 701380 | |
| dc.identifier.issn | 0001-8708 | |
| dc.identifier.uri | https://hdl.handle.net/2445/164373 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier B.V. | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.aim.2020.107214 | |
| dc.relation.ispartof | Advances in Mathematics, 2020, vol. 370 | |
| dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/703269/EU//CoTraDy | |
| dc.relation.uri | https://doi.org/10.1016/j.aim.2020.107214 | |
| dc.rights | cc-by-nc-nd (c) Elsevier B.V., 2020 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Sistemes dinàmics complexos | |
| dc.subject.classification | Sistemes dinàmics hiperbòlics | |
| dc.subject.other | Complex dynamical systems | |
| dc.subject.other | Hyperbolic dynamical systems | |
| dc.title | A bound on the number of rationally invisible repelling orbits | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1