A bound on the number of rationally invisible repelling orbits

dc.contributor.authorBenini, Anna Miriam
dc.contributor.authorFagella Rabionet, Núria
dc.date.accessioned2020-06-05T07:00:56Z
dc.date.available2022-08-26T05:10:21Z
dc.date.issued2020-08-26
dc.date.updated2020-06-05T07:00:56Z
dc.description.abstractWe consider entire transcendental maps with bounded set of singular values such that periodic rays exist and land. For such maps, we prove a refined version of the Fatou-Shishikura inequality which takes into account rationally invisible periodic orbits, that is, repelling cycles which are not landing points of any periodic ray. More precisely, if there are $q<\infty$ singular orbits, then the sum of the number of attracting, parabolic, Siegel, Cremer or rationally invisible orbits is bounded above by $q$. In particular, there are at most $q$ rationally invisible repelling periodic orbits. The techniques presented here also apply to the more general setting in which the function is allowed to have infinitely many singular values.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec701380
dc.identifier.issn0001-8708
dc.identifier.urihttps://hdl.handle.net/2445/164373
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.aim.2020.107214
dc.relation.ispartofAdvances in Mathematics, 2020, vol. 370
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/703269/EU//CoTraDy
dc.relation.urihttps://doi.org/10.1016/j.aim.2020.107214
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics complexos
dc.subject.classificationSistemes dinàmics hiperbòlics
dc.subject.otherComplex dynamical systems
dc.subject.otherHyperbolic dynamical systems
dc.titleA bound on the number of rationally invisible repelling orbits
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
701380.pdf
Mida:
383.65 KB
Format:
Adobe Portable Document Format