Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202401
Integrating topological features to enhance cardiac disease diagnosis from 3D CMR images
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] Persistent homology is a technique from the field of algebraic topology for the analysis and characterization of the shape and structure of datasets in multiple dimensions. Its use is based on the identification and quantification of topological patterns in the dataset across various scales. In this thesis, persistent homology is applied with the objective of extracting topological descriptors from three-dimensional cardiovascular magnetic resonance (CMR) imaging. Thereafter, topological descriptors are used for the detection of cardiovascular diseases by means of Machine Learning (ML) techniques.
Radiomics has been one of the recently proposed approaches for disease diagnosis. This method involves the extraction and subsequent analysis of a significant number of quantitative descriptors from medical images. These descriptors offer a characterization of the spatial distribution, texture, and intensity of the structures present in the images.
This study demonstrates that radiomics and topological descriptors achieve comparable results, providing complementary insights into the underlying structures and characteristics of anatomical tissues. Moreover, the combination of these two methods leads to a further improvement of the performance of ML models, thereby
enhancing medical diagnosis.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Carles Casacuberta i Polyxeni Gkontra
Matèries (anglès)
Citació
Col·leccions
Citació
ANGUAS ESCOBAR, Marina. Integrating topological features to enhance cardiac disease diagnosis from 3D CMR images. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/202401]