Wind-independent estimation of gas source distance from transient features of metal oxide sensor signals

dc.contributor.authorBurgués, Javier
dc.contributor.authorMarco Colás, Santiago
dc.date.accessioned2019-10-30T13:59:00Z
dc.date.available2019-10-30T13:59:00Z
dc.date.issued2019-09
dc.date.updated2019-10-30T13:59:00Z
dc.description.abstractThe intermittency of the instantaneous concentration of a turbulent chemical plume is a fundamental cue for estimating the chemical source distance using chemical sensors. Such estimate is useful in applications such as environmental monitoring or localization of fugitive gas emissions by mobile robots or sensor networks. However, the inherent low-pass filtering of metal oxide (MOX) gas sensors typically used in odor-guided robots and dense sensor networks due to their low cost, weight and size hinders the quantification of concentration intermittency. In this paper, we design a digital differentiator to invert the low-pass dynamics of the sensor response, thus obtaining a much faster signal from which the concentration intermittency can be effectively computed. Using a fast photo-ionization detector as a reference instrument, we demonstrate that the filtered signal is a good approximation of the instantaneous concentration in a real turbulent plume. We then extract transient features from the filtered signal the so-called ''bouts'' to predict the chemical source distance, focusing on the optimization of the filter parameters and the noise threshold to make the predictions robust against changing wind conditions. This represents an advantage over previous bout-based models which require wind measurements typically taken with expensive and bulky anemometers to produce accurate predictions. The proposed methodology is demonstrated in a wind tunnel scenario where a MOX sensor is placed at various distances downwind of an emitting chemical source and the wind speed varies in the range 10-34 cm/s. The results demonstrate that models optimized with our methodology can provide accurate source distance predictions at different wind speeds.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec691711
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/2445/143528
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1109/ACCESS.2019.2940936
dc.relation.ispartofIEEE Access, 2019, vol. 7, p. 140461-140469
dc.relation.urihttps://doi.org/10.1109/ACCESS.2019.2940936
dc.rightscc-by (c) Burgués Calderón, Javier et al., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationDetectors de gasos
dc.subject.classificationProcessament de senyals
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAnàlisi de sèries temporals
dc.subject.otherGas detectors
dc.subject.otherSignal processing
dc.subject.otherMachine learning
dc.subject.otherTime-series analysis
dc.titleWind-independent estimation of gas source distance from transient features of metal oxide sensor signals
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
691711.pdf
Mida:
2.62 MB
Format:
Adobe Portable Document Format