El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes

dc.contributor.authorOrdoño, Jesús
dc.contributor.authorPérez Amodio, Soledad
dc.contributor.authorBall, Kristen
dc.contributor.authorAguirre, Aitor
dc.contributor.authorEngel, Elisabeth
dc.date.accessioned2022-09-16T06:33:11Z
dc.date.available2022-09-16T06:33:11Z
dc.date.issued2022-08-05
dc.date.updated2022-09-15T14:25:16Z
dc.description.abstractIn situ tissue engineering strategies are a promising approach to activate the endogenous regenerative potential of the cardiac tissue helping the heart to heal itself after an injury. However, the current use of complex reprogramming vectors for the activation of reparative pathways challenges the easy translation of these therapies into the clinic. Here, we evaluated the response of mouse neonatal and human induced pluripotent stem cell-derived cardiomyocytes to the presence of exogenous lactate, thus mimicking the metabolic environment of the fetal heart. An increase in cardiomyocyte cell cycle activity was observed in the presence of lactate, as determined through Ki67 and Aurora-B kinase. Gene expression and RNA-sequencing data revealed that cardiomyocytes incubated with lactate showed upregulation of BMP10, LIN28 or TCIM in tandem with downregulation of GRIK1 or DGKK among others. Lactate also demonstrated a capability to modulate the production of inflammatory cytokines on cardiac fibroblasts, reducing the production of Fas, Fraktalkine or IL-12p40, while stimulating IL-13 and SDF1a. In addition, the generation of a lactate-rich environment improved ex vivo neonatal heart culture, by affecting the contractile activity and sarcomeric structures and inhibiting epicardial cell spreading. Our results also suggested a common link between the effect of lactate and the activation of hypoxia signaling pathways. These findings support a novel use of lactate in cardiac tissue engineering, modulating the metabolic environment of the heart and thus paving the way to the development of lactate-releasing platforms for in situ cardiac regeneration.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina6566215
dc.identifier.issn2772-9508
dc.identifier.pmid35907761
dc.identifier.urihttps://hdl.handle.net/2445/189083
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.bioadv.2022.213035
dc.relation.ispartofBiomaterials Advances, 2022, vol.139, num. 213035
dc.relation.urihttps://doi.org/10.1016/j.bioadv.2022.213035
dc.rightscc by-nc-nd (c) Ordoño, Jesús et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
dc.subject.classificationTissue engineering
dc.subject.classificationCèl·lules mare embrionàries
dc.subject.classificationMalalties cardiovasculars
dc.subject.otherEnginyeria de teixits
dc.subject.otherEmbryonic stem cells
dc.subject.otherCardiovascular diseases
dc.titleThe generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
2022_BioAdv_TheGeneration_EngelE.pdf
Mida:
3.89 MB
Format:
Adobe Portable Document Format