Active superelasticity in three-dimensional epithelia of controlled shape

dc.contributor.authorLatorre, Ernest
dc.contributor.authorKale, Sohan
dc.contributor.authorCasares, Laura
dc.contributor.authorGómez-González, Manuel
dc.contributor.authorUroz, Marina
dc.contributor.authorValon, Léo
dc.contributor.authorNair, Roshna V.
dc.contributor.authorGarreta, Elena
dc.contributor.authorMontserrat, Núria
dc.contributor.authorCampo, Aránzazu del
dc.contributor.authorLadoux, Benoit
dc.contributor.authorArroyo, Marino
dc.contributor.authorTrepat Guixer, Xavier
dc.date.accessioned2020-01-17T10:21:05Z
dc.date.available2020-01-17T10:21:05Z
dc.date.issued2018-10-31
dc.description.abstractFundamental biological processes are carried out by curved epithelial sheets that enclose a pressurized lumen. How these sheets develop and withstand three-dimensional deformations has remained unclear. Here we combine measurements of epithelial tension and shape with theoretical modelling to show that epithelial sheets are active superelastic materials. We produce arrays of epithelial domes with controlled geometry. Quantification of luminal pressure and epithelial tension reveals a tensional plateau over several-fold areal strains. These extreme strains in the tissue are accommodated by highly heterogeneous strains at a cellular level, in seeming contradiction to the measured tensional uniformity. This phenomenon is reminiscent of superelasticity, a behaviour that is generally attributed to microscopic material instabilities in metal alloys. We show that in epithelial cells this instability is triggered by a stretch-induced dilution of the actin cortex, and is rescued by the intermediate filament network. Our study reveals a type of mechanical behaviour—which we term active superelasticity—that enables epithelial sheets to sustain extreme stretching under constant tension.ca
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.pmid30401836
dc.identifier.urihttps://hdl.handle.net/2445/148077
dc.language.isoengca
dc.publisherSpringer Natureca
dc.relation.isformatofVersió postrint del document publicat a: http://doi.org/10.1038/s41586-018-0671-4
dc.relation.ispartofNature, 2018, vol. 563, p. 203-208
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/731957/EU//MECHANO-CONTROL
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/681434/EU//EpiMech
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/640525/EU//REGMAMKID
dc.relation.urihttp://doi.org/10.1038/s41586-018-0671-4
dc.rights(c) Springer Nature Limited, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
dc.subject.classificationCèl·lules epitelials
dc.subject.classificationElasticitat
dc.subject.otherEpithelial cells
dc.subject.otherElasticity
dc.titleActive superelasticity in three-dimensional epithelia of controlled shapeca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
23525144.pdf
Mida:
21.35 MB
Format:
Adobe Portable Document Format
Descripció: