Deposition and in-situ formation of nanostructured Mo2C nanoparticles on graphene nanowalls support for efficient electrocatalytic hydrogen evolution

dc.contributor.authorChaitoglou, Stefanos
dc.contributor.authorOspina R.
dc.contributor.authorMa, Y.
dc.contributor.authorAmade Rovira, Roger
dc.contributor.authorVendrell, Xavier
dc.contributor.authorRodriguez-Pereira, J.
dc.contributor.authorBertrán Serra, Enric
dc.date.accessioned2025-02-21T17:56:19Z
dc.date.available2025-02-21T17:56:19Z
dc.date.issued2023-11-16
dc.date.updated2025-02-21T17:56:20Z
dc.description.abstractTo accelerate the transition to a green economy based on hydrogen, more efficient and cost-effective electrocatalysts should be adapted. Among them, transition metal carbides, particularly Mo<sub>2</sub>C, have gained significant attention within the scientific community due to their abundance and potential for high performance in the hydrogen evolution reaction (HER). This study introduces a bottom-up approach involving chemical vapor deposition, impregnation in solvent containing the Mo precursor and thermal annealing processes to carburize the Mo nanostructures anchored on vertical graphene nanowalls supports (GNWs). The role of GNWs is highlighted in the above processes. First, they provide abundant defective sites on their edges, which facilitate the binding of the metal compound molecules. Second, they provide C species during the annealing process which migrate and react with the transition metal to carburize it. Thus, they act as both C precursor and support system. Electrochemical characterization shows that the hybrids can be very efficient electrocatalysts towards hydrogen evolution reaction in acid electrolyte. When used as a cathode in a cell, it requires only − 141 mV to generate 10 mA/cm<sup>2</sup> and shows excellent stability after hours of operation, making them highly promising for practical applications. This study paves the way for the design of hybrid nanostructures, utilizing nanocatalyst deposition on three-dimensional graphene supports. Such advancements hold great potential for driving the development of sustainable and efficient hydrogen production systems.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec741547
dc.identifier.issn0925-8388
dc.identifier.urihttps://hdl.handle.net/2445/219113
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.jallcom.2023.172891
dc.relation.ispartofJournal of Alloys and Compounds, 2023, vol. 972, p. 1-11
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2023.172891
dc.rightscc-by-nc-nd (c) Chaitoglou, Stefanos, et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Física Aplicada)
dc.subject.classificationCarburs
dc.subject.classificationElectrocatàlisi
dc.subject.classificationHidrogen
dc.subject.otherCarbides
dc.subject.otherElectrocatalysis
dc.subject.otherHydrogen
dc.titleDeposition and in-situ formation of nanostructured Mo2C nanoparticles on graphene nanowalls support for efficient electrocatalytic hydrogen evolution
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
835721.pdf
Mida:
7.31 MB
Format:
Adobe Portable Document Format