Nowcasting and forecasting GDP growth with machine-learning sentiment indicators

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2021-03-14T21:08:30Z
dc.date.available2021-03-14T21:08:30Z
dc.date.issued2021
dc.description.abstractWe apply the two-step machine-learning method proposed by Claveria et al. (2021) to generate country-specific sentiment indicators that provide estimates of year-on-year GDP growth rates. In the first step, by means of genetic programming, business and consumer expectations are evolved to derive sentiment indicators for 19 European economies. In the second step, the sentiment indicators are iteratively re-computed and combined each period to forecast yearly growth rates. To assess the performance of the proposed approach, we have designed two out-of-sample experiments: a nowcasting exercise in which we recursively generate estimates of GDP at the end of each quarter using the latest survey data available, and an iterative forecasting exercise for different forecast horizons We found that forecasts generated with the sentiment indicators outperform those obtained with time series models. These results show the potential of the methodology as a predictive toolca
dc.format.extent27 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/175054
dc.language.isoengca
dc.publisherUniversitat de Barcelona. Facultat d'Economia i Empresaca
dc.relation.isformatofReproducció del document publicat a: http://www.ub.edu/irea/working_papers/2021/202103.pdf
dc.relation.ispartofIREA – Working Papers, 2021, IR21/03
dc.relation.ispartofAQR – Working Papers, 2021, AQR21/01
dc.relation.ispartofseries[WP E-IR21/03]ca
dc.relation.ispartofseries[WP E-AQR21/01]
dc.rightscc-by-nc-nd, (c) Clavería González, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))
dc.subject.classificationCreixement econòmic
dc.subject.classificationAnàlisi de regressió
dc.subject.classificationGenètica
dc.subject.otherEconomic development
dc.subject.otherRegression analysis
dc.subject.otherGenetics
dc.titleNowcasting and forecasting GDP growth with machine-learning sentiment indicatorsca
dc.typeinfo:eu-repo/semantics/workingPaperca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
IR21_003_Claveria+Monte+Torra_Nowcasting.pdf
Mida:
1.83 MB
Format:
Adobe Portable Document Format
Descripció: