Stability for some linear stochastic fractional systems

dc.contributor.authorFiel, A.
dc.contributor.authorLeón, Jorge A.
dc.contributor.authorMárquez, David (Márquez Carreras)
dc.date.accessioned2024-11-18T09:03:09Z
dc.date.available2024-11-18T09:03:09Z
dc.date.issued2014-01-06
dc.date.updated2024-11-18T09:03:09Z
dc.description.abstractWe obtain a closed expression for the solution of a linear Volterra integral equation with an additive Hölder continuous noise, which is a fractional Young integral, and with a function as initial condition. This solution is given in terms of the Mittag-Leffler function. Then we study the stability of the solution via the fractional calculus. As an application we analyze the stability in the mean of some stochastic fractional integral equations with a functional of the fractional Brownian motion as an additive noise.
dc.format.extent21 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec642775
dc.identifier.issn0973-9599
dc.identifier.urihttps://hdl.handle.net/2445/216548
dc.language.isoeng
dc.publisherSerials Publications
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.31390/cosa.8.2.05
dc.relation.ispartofCommunications on Stochastic Analysis, 2014, vol. 8, num.2, p. 205-225
dc.relation.urihttps://doi.org/10.31390/cosa.8.2.05
dc.rights(c) Serials Publications, 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEquacions diferencials ordinàries
dc.subject.classificationTeoria de sistemes
dc.subject.classificationFuncions de variables reals
dc.subject.otherOrdinary differential equations
dc.subject.otherSystem theory
dc.subject.otherFunctions of real variables
dc.titleStability for some linear stochastic fractional systems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
176454.pdf
Mida:
236.06 KB
Format:
Adobe Portable Document Format