Sharp constants related to the triangle inequality in Lorentz spaces

dc.contributor.authorBarza, Sorina
dc.contributor.authorKolyada, Viktor
dc.contributor.authorSoria de Diego, F. Javier
dc.date.accessioned2016-02-24T10:21:10Z
dc.date.available2016-02-24T10:21:10Z
dc.date.issued2009
dc.date.updated2016-02-24T10:21:15Z
dc.description.abstractWe study the Lorentz spaces $ L^{p,s}(R,\mu)$ in the range $ 1<p<s\le \infty$, for which the standard functional $\displaystyle \vert\vert f\vert\vert _{p,s}=\left(\int_0^\infty (t^{1/p}f^*(t))^s\frac{dt}{t}\right)^{1/s} $ is only a quasi-norm. We find the optimal constant in the triangle inequality for this quasi-norm, which leads us to consider the following decomposition norm: $\displaystyle \vert\vert f\vert\vert _{(p,s)}=\inf\bigg\{\sum_{k}\vert\vert f_k\vert\vert _{p,s}\bigg\}, $ where the infimum is taken over all finite representations $ f=\sum_{k}f_k. $ We also prove that the decomposition norm and the dual norm $\displaystyle \vert\vert f\vert\vert _{p,s}'= \sup\left\{ \int_R fg d\mu: \vert\vert g\vert\vert _{p',s'}=1\right\}$ agree for all values of $ p,s>1$.
dc.format.extent20 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec555509
dc.identifier.issn0002-9947
dc.identifier.urihttps://hdl.handle.net/2445/95822
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-09-04739-4
dc.relation.ispartofTransactions of the American Mathematical Society, 2009, vol. 361, num. 10, p. 5555-5574
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9947-09-04739-4
dc.rights(c) American Mathematical Society (AMS), 2009
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnàlisi funcional
dc.subject.classificationEspais de Lorentz
dc.subject.otherFunctional analysis
dc.subject.otherLorentz spaces
dc.titleSharp constants related to the triangle inequality in Lorentz spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
555509.pdf
Mida:
280.34 KB
Format:
Adobe Portable Document Format