Charge transport at the protein-electrode interface in the emerging field of biomolecular electronics

dc.contributor.authorHa, Tracy Q.
dc.contributor.authorPlanje, Inco J.
dc.contributor.authorWhite, Jhanelle R.G.
dc.contributor.authorAragonès, Albert C.
dc.contributor.authorDíez Pérez, Ismael
dc.date.accessioned2023-07-03T15:25:23Z
dc.date.available2023-07-03T15:25:23Z
dc.date.issued2021-03-17
dc.date.updated2023-07-03T15:25:23Z
dc.description.abstractThe emerging field of BioMolecular Electronics aims to unveil the charge transport characteristics of biomolecules with two primary outcomes envisioned. The first is to use nature's efficient charge transport mechanisms as an inspiration to build the next generation of hybrid bioelectronic devices towards a more sustainable, biocompatible and efficient technology. The second is to understand this ubiquitous physicochemical process in life, exploited in many fundamental biological processes such as cell signalling, respiration, photosynthesis or enzymatic catalysis, leading us to a better understanding of disease mechanisms connected to charge diffusion. Extracting electrical signatures from a protein requires optimised methods for tethering the molecules to an electrode surface, where it is advantageous to have precise electrochemical control over the energy levels of the hybrid protein-electrode interface. Here, we review recent progress towards understanding the charge transport mechanisms through protein-electrode-protein junctions, which has led to the rapid development of the new BioMolecular Electronics field. The field has brought a new vision into the molecular electronics realm, wherein complex supramolecular structures such as proteins can efficiently transport charge over long distances when placed in a hybrid bioelectronic device. Such anomalous long-range charge transport mechanisms acutely depend on specific chemical modifications of the supramolecular protein structure and on the precisely engineered protein-electrode chemical interactions. Key areas to explore in more detail are parameters such as protein stiffness (dynamics) and intrinsic electrostatic charge and how these influence the transport pathways and mechanisms in such hybrid devices.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec724962
dc.identifier.issn2451-9103
dc.identifier.urihttps://hdl.handle.net/2445/200229
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.coelec.2021.100734
dc.relation.ispartofCurrent Opinion In Electrochemistry, 2021, vol. 28, p. 100734
dc.relation.urihttps://doi.org/10.1016/j.coelec.2021.100734
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationElectrònica molecular
dc.subject.classificationBiomolècules
dc.subject.classificationHibridació
dc.subject.otherMolecular electronics
dc.subject.otherBiomolecules
dc.subject.otherHybridization
dc.titleCharge transport at the protein-electrode interface in the emerging field of biomolecular electronics
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
724962.pdf
Mida:
21.18 MB
Format:
Adobe Portable Document Format