Machine Learning Algorithms in Controlled Donation After Circulatory Death Under Normothermic Regional Perfusion: A Graft Survival Prediction Model

dc.contributor.authorCalleja Lozano, Rafael
dc.contributor.authorRivera Gavilán, Marcos
dc.contributor.authorGuijo Rubio, David
dc.contributor.authorHessheimer, Amelia Judith
dc.contributor.authorRosa, Gloria de la
dc.contributor.authorGastaca, Mikel
dc.contributor.authorOtero Ferreiro, Alejandra
dc.contributor.authorRamírez Romero, Pablo
dc.contributor.authorBoscà Robledo, Andrea
dc.contributor.authorSantoyo, Julio
dc.contributor.authorMarín Gómez, Luís Miguel
dc.contributor.authorVillar del Moral, Jesús
dc.contributor.authorFundora, Yilian
dc.contributor.authorLladó Garriga, Laura
dc.contributor.authorLoinaz, Carmelo
dc.contributor.authorJiménez Garrido, Manuel
dc.contributor.authorRodríguez Laíz, Gonzalo
dc.contributor.authorLópez Baena, José Ángel
dc.contributor.authorCharco, Ramón
dc.contributor.authorVaro, Evaristo
dc.contributor.authorRotellar Sastre, Fernando
dc.contributor.authorAlonso, Ayaya
dc.contributor.authorRodríguez Sanjuan, Juan Carlos
dc.contributor.authorBlanco-Fernández, Gerardo
dc.contributor.authorNuño, Javier
dc.contributor.authorPacheco Sánchez, David
dc.contributor.authorColl, Elisabeth
dc.contributor.authorDomínguez Gil, Beatriz
dc.contributor.authorFondevila Campo, Constantino
dc.contributor.authorAyllón, María Dolors
dc.contributor.authorDurán Martínez, Manuel
dc.contributor.authorCiria, Rubén
dc.contributor.authorGutiérrez, Pedro Antonio
dc.contributor.authorGómez Orellana, Antonio
dc.contributor.authorHervás Martínez, Cesar
dc.contributor.authorBriceño, Javier
dc.date.accessioned2025-10-03T12:59:28Z
dc.date.available2025-10-03T12:59:28Z
dc.date.issued2025-07
dc.date.updated2025-10-03T10:06:23Z
dc.description.abstractBackground. Several scores have been developed to stratify the risk of graft loss in controlled donation after circulatory death (cDCD). However, their performance is unsatisfactory in the Spanish population, where most cDCD livers are recovered using normothermic regional perfusion (NRP). Consequently, we explored the role of different machine learning-based classifiers as predictive models for graft survival. A risk stratification score integrated with the model of end-stage liver disease score in a donor-recipient (D-R) matching system was developed. Methods. This retrospective multicenter cohort study used 539 D-R pairs of cDCD livers recovered with NRP, including 20 donor, recipient, and NRP variables. The following machine learning-based classifiers were evaluated: logistic regression, ridge classifier, support vector classifier, multilayer perceptron, and random forest. The endpoints were the 3- and 12-mo graft survival rates. A 3- and 12-mo risk score was developed using the best model obtained. Results. Logistic regression yielded the best performance at 3 mo (area under the receiver operating characteristic curve = 0.82) and 12 mo (area under the receiver operating characteristic curve = 0.83). A D-R matching system was proposed on the basis of the current model of end-stage liver disease score and cDCD-NRP risk score. Conclusions. The satisfactory performance of the proposed score within the study population suggests a significant potential to support liver allocation in cDCD-NRP grafts. External validation is challenging, but this methodology may be explored in other regions.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec760388
dc.identifier.issn0041-1337
dc.identifier.pmid39780307
dc.identifier.urihttps://hdl.handle.net/2445/223493
dc.language.isoeng
dc.publisherLippincott, Williams & Wilkins
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1097/tp.0000000000005312
dc.relation.ispartofTransplantation, 2025, vol. 109, num.7, p. e362-e370
dc.relation.urihttps://doi.org/10.1097/tp.0000000000005312
dc.rightscc-by-nc-nd (c) Calleja Lozano, Rafael et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Cirurgia i Especialitats Medicoquirúrgiques)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationDonants d'òrgans
dc.subject.otherMachine learning
dc.subject.otherOrgan donors
dc.titleMachine Learning Algorithms in Controlled Donation After Circulatory Death Under Normothermic Regional Perfusion: A Graft Survival Prediction Model
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
899460.pdf
Mida:
868.81 KB
Format:
Adobe Portable Document Format