Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) American Mathematical Society (AMS), 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/120454

Finite groups acting symplectically on T^2 x S^2

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

For any symplectic form $ \omega $ on $ T^2\times S^2$ we construct infinitely many nonisomorphic finite groups which admit effective smooth actions on $ T^2\times S^2$ that are trivial in cohomology but which do not admit any effective symplectic action on $ (T^2\times S^2,\omega )$. We also prove that for any $ \omega $ there is another symplectic form $ \omega '$ on $ T^2\times S^2$ and a finite group acting symplectically and effectively on $ (T^2\times S^2,\omega ')$ which does not admit any effective symplectic action on $ (T^2\times S^2,\omega )$. A basic ingredient in our arguments is the study of the Jordan property of the symplectomorphism groups of $ T^2\times S^2$. A group $ G$ is Jordan if there exists a constant $ C$ such that any finite subgroup $ \Gamma $ of $ G$ contains an abelian subgroup whose index in $ \Gamma $ is at most $ C$. Csikós, Pyber and Szabó proved recently that the diffeomorphism group of $ T^2\times S^2$ is not Jordan. We prove that, in contrast, for any symplectic form $ \omega $ on $ T^2\times S^2$ the group of symplectomorphisms $ \mathrm {Symp}(T^2\times S^2,\omega )$ is Jordan. We also give upper and lower bounds for the optimal value of the constant $ C$ in Jordan's property for $ \mathrm {Symp}(T^2\times S^2,\omega )$ depending on the cohomology class represented by $ \omega $. Our bounds are sharp for a large class of symplectic forms on $ T^2\times S^2$.

Matèries (anglès)

Citació

Citació

MUNDET I RIERA, Ignasi. Finite groups acting symplectically on T^2 x S^2. _Transactions of the American Mathematical Society_. 2017. Vol. 369, núm. 6, pàgs. 4457-4483. [consulta: 28 de gener de 2026]. ISSN: 0002-9947. [Disponible a: https://hdl.handle.net/2445/120454]

Exportar metadades

JSON - METS

Compartir registre