Finite groups acting symplectically on T^2 x S^2

dc.contributor.authorMundet i Riera, Ignasi
dc.date.accessioned2018-03-05T15:09:35Z
dc.date.available2018-03-05T15:09:35Z
dc.date.issued2017-02-13
dc.date.updated2018-03-05T15:09:35Z
dc.description.abstractFor any symplectic form $ \omega $ on $ T^2\times S^2$ we construct infinitely many nonisomorphic finite groups which admit effective smooth actions on $ T^2\times S^2$ that are trivial in cohomology but which do not admit any effective symplectic action on $ (T^2\times S^2,\omega )$. We also prove that for any $ \omega $ there is another symplectic form $ \omega '$ on $ T^2\times S^2$ and a finite group acting symplectically and effectively on $ (T^2\times S^2,\omega ')$ which does not admit any effective symplectic action on $ (T^2\times S^2,\omega )$. A basic ingredient in our arguments is the study of the Jordan property of the symplectomorphism groups of $ T^2\times S^2$. A group $ G$ is Jordan if there exists a constant $ C$ such that any finite subgroup $ \Gamma $ of $ G$ contains an abelian subgroup whose index in $ \Gamma $ is at most $ C$. Csikós, Pyber and Szabó proved recently that the diffeomorphism group of $ T^2\times S^2$ is not Jordan. We prove that, in contrast, for any symplectic form $ \omega $ on $ T^2\times S^2$ the group of symplectomorphisms $ \mathrm {Symp}(T^2\times S^2,\omega )$ is Jordan. We also give upper and lower bounds for the optimal value of the constant $ C$ in Jordan's property for $ \mathrm {Symp}(T^2\times S^2,\omega )$ depending on the cohomology class represented by $ \omega $. Our bounds are sharp for a large class of symplectic forms on $ T^2\times S^2$.
dc.format.extent27 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec670460
dc.identifier.issn0002-9947
dc.identifier.urihttps://hdl.handle.net/2445/120454
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1090/tran/6978
dc.relation.ispartofTransactions of the American Mathematical Society, 2017, vol. 369, num. 6, p. 4457-4483
dc.relation.urihttps://doi.org/10.1090/tran/6978
dc.rightscc-by-nc-nd (c) American Mathematical Society (AMS), 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationHomologia
dc.subject.classificationGeometria algebraica
dc.subject.otherHomology
dc.subject.otherAlgebraic geometry
dc.titleFinite groups acting symplectically on T^2 x S^2
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
670460.pdf
Mida:
372.87 KB
Format:
Adobe Portable Document Format