Finite groups acting symplectically on T^2 x S^2
| dc.contributor.author | Mundet i Riera, Ignasi | |
| dc.date.accessioned | 2018-03-05T15:09:35Z | |
| dc.date.available | 2018-03-05T15:09:35Z | |
| dc.date.issued | 2017-02-13 | |
| dc.date.updated | 2018-03-05T15:09:35Z | |
| dc.description.abstract | For any symplectic form $ \omega $ on $ T^2\times S^2$ we construct infinitely many nonisomorphic finite groups which admit effective smooth actions on $ T^2\times S^2$ that are trivial in cohomology but which do not admit any effective symplectic action on $ (T^2\times S^2,\omega )$. We also prove that for any $ \omega $ there is another symplectic form $ \omega '$ on $ T^2\times S^2$ and a finite group acting symplectically and effectively on $ (T^2\times S^2,\omega ')$ which does not admit any effective symplectic action on $ (T^2\times S^2,\omega )$. A basic ingredient in our arguments is the study of the Jordan property of the symplectomorphism groups of $ T^2\times S^2$. A group $ G$ is Jordan if there exists a constant $ C$ such that any finite subgroup $ \Gamma $ of $ G$ contains an abelian subgroup whose index in $ \Gamma $ is at most $ C$. Csikós, Pyber and Szabó proved recently that the diffeomorphism group of $ T^2\times S^2$ is not Jordan. We prove that, in contrast, for any symplectic form $ \omega $ on $ T^2\times S^2$ the group of symplectomorphisms $ \mathrm {Symp}(T^2\times S^2,\omega )$ is Jordan. We also give upper and lower bounds for the optimal value of the constant $ C$ in Jordan's property for $ \mathrm {Symp}(T^2\times S^2,\omega )$ depending on the cohomology class represented by $ \omega $. Our bounds are sharp for a large class of symplectic forms on $ T^2\times S^2$. | |
| dc.format.extent | 27 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 670460 | |
| dc.identifier.issn | 0002-9947 | |
| dc.identifier.uri | https://hdl.handle.net/2445/120454 | |
| dc.language.iso | eng | |
| dc.publisher | American Mathematical Society (AMS) | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1090/tran/6978 | |
| dc.relation.ispartof | Transactions of the American Mathematical Society, 2017, vol. 369, num. 6, p. 4457-4483 | |
| dc.relation.uri | https://doi.org/10.1090/tran/6978 | |
| dc.rights | cc-by-nc-nd (c) American Mathematical Society (AMS), 2017 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Homologia | |
| dc.subject.classification | Geometria algebraica | |
| dc.subject.other | Homology | |
| dc.subject.other | Algebraic geometry | |
| dc.title | Finite groups acting symplectically on T^2 x S^2 | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1