Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/188641
Machine Learning Applied to High Energy Physics
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Machine learning algorithms have gained traction in a variety of fields throughout the last decade. This final degree project focuses on a bank problem and on a high-energy physics problem: searching for a rare Λ0b
decay. Two different machine learning methods are used: Neural Networks and Boosted Trees, implemented in three different Phython libraries: TensorFlow and Keras, PyTorch and XGBoost. Using the AUC-ROC curve, the models between the three libraries are compared, and finally, models try to predict whether the Λ0b
decay happens for a given data.
Results for the bank problem shows nearly the same performance for TensorFlow and PyTorch, while XGBoost seems significantly better. For the high-energy problem XGBoost seems better, followed by TensorFlow and last PyTorch. However, predictions made on new data shows similar performance for XGBoost and PyTorch.
Descripció
Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutora: Carla Marín Benito
Matèries (anglès)
Citació
Col·leccions
Citació
COSTA LEDESMA, Vanessa. Machine Learning Applied to High Energy Physics. [consulta: 14 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/188641]