Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Costa, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/188641

Machine Learning Applied to High Energy Physics

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Machine learning algorithms have gained traction in a variety of fields throughout the last decade. This final degree project focuses on a bank problem and on a high-energy physics problem: searching for a rare Λ0b decay. Two different machine learning methods are used: Neural Networks and Boosted Trees, implemented in three different Phython libraries: TensorFlow and Keras, PyTorch and XGBoost. Using the AUC-ROC curve, the models between the three libraries are compared, and finally, models try to predict whether the Λ0b decay happens for a given data. Results for the bank problem shows nearly the same performance for TensorFlow and PyTorch, while XGBoost seems significantly better. For the high-energy problem XGBoost seems better, followed by TensorFlow and last PyTorch. However, predictions made on new data shows similar performance for XGBoost and PyTorch.

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutora: Carla Marín Benito

Citació

Citació

COSTA LEDESMA, Vanessa. Machine Learning Applied to High Energy Physics. [consulta: 14 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/188641]

Exportar metadades

JSON - METS

Compartir registre