Machine Learning Applied to High Energy Physics

dc.contributor.advisorMarín Benito, Carla
dc.contributor.authorCosta Ledesma, Vanessa
dc.date.accessioned2022-09-02T08:14:16Z
dc.date.available2022-09-02T08:14:16Z
dc.date.issued2022-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutora: Carla Marín Benitoca
dc.description.abstractMachine learning algorithms have gained traction in a variety of fields throughout the last decade. This final degree project focuses on a bank problem and on a high-energy physics problem: searching for a rare Λ0b decay. Two different machine learning methods are used: Neural Networks and Boosted Trees, implemented in three different Phython libraries: TensorFlow and Keras, PyTorch and XGBoost. Using the AUC-ROC curve, the models between the three libraries are compared, and finally, models try to predict whether the Λ0b decay happens for a given data. Results for the bank problem shows nearly the same performance for TensorFlow and PyTorch, while XGBoost seems significantly better. For the high-energy problem XGBoost seems better, followed by TensorFlow and last PyTorch. However, predictions made on new data shows similar performance for XGBoost and PyTorch.ca
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/188641
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Costa, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationXarxes neuronals (Informàtica)cat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherMachine learningeng
dc.subject.otherNeural networks (Computer science)eng
dc.subject.otherBachelor's theseseng
dc.titleMachine Learning Applied to High Energy Physicseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
COSTA LEDESMA VANESSA_6057605_assignsubmission_file_TFG-Costa-Ledesma-Vanessa.pdf
Mida:
529.32 KB
Format:
Adobe Portable Document Format
Descripció: