Scrolls and Quartics

dc.contributor.authorXambó Descamps, Sebastiáncat
dc.date.accessioned2011-03-08T09:49:25Z-
dc.date.available2011-03-08T09:49:25Z-
dc.date.issued1982-
dc.description.abstractIn [S 1] Saint-Donat shows how to apply a theorem of Del Pezzo and Bertini (quoted as theorem l below) to recover the main result of [XXX] concerning the projective classification of codimension two cubic varieties. In this paper we show how the samc theorem, and sorne relatcd results, can be used to produce an "enumcration" of quartic varieties somcwhat more cxplicit than that given by Swinncrton-Dyer in lS2]. Our main rcsult esscntially says that a codimension 2 quartic variety which is contained in a unique quadric is rationally ruled, so that, by a theorem of Bertini, must be the projection uf a quartic scroll (see theorems 5 ami 6 bclow for complete statements).
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.identifier.idgrec3889-
dc.identifier.issn0010-0757-
dc.identifier.urihttps://hdl.handle.net/2445/16933-
dc.language.isoengeng
dc.publisherUniversitat de Barcelonacat
dc.relation.isformatofReproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/3556/4235cat
dc.relation.ispartofCollectanea Mathematica, 1982, vol. 33, núm. 1, p. 89-101cat
dc.rights(c) Universitat de Barcelona, 1982-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationGeometria algebraicacat
dc.subject.otherAlgebraic geometryeng
dc.titleScrolls and Quarticseng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
3889.pdf
Mida:
405.58 KB
Format:
Adobe Portable Document Format