The appraisal of machine learning techniques for tourism demand forecasting

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2020-12-11T09:31:14Z
dc.date.available2020-12-11T09:31:14Z
dc.date.issued2017
dc.date.updated2020-12-11T09:31:14Z
dc.description.abstractMachine learning (ML) methods are being increasingly used with forecasting purposes. This study assesses the predictive performance of several ML models in a multiple-input multiple-output (MIMO) setting that allows incorporating the cross-correlations between the inputs. We compare the forecast accuracy of a Gaussian process regression (GPR) model to that of different neural network architectures in a multi-step-ahead time series prediction experiment. We find that the radial basis function (RBF) network outperforms the GPR model, especially for long-term forecast horizons. As the memory of the models increases, the forecasting performance of the GPR improves, suggesting the convenience of designing a model selection criteria in order to estimate the optimal number of lags used for concatenation.
dc.format.extent21 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec705063
dc.identifier.issn1535-6698
dc.identifier.urihttps://hdl.handle.net/2445/172665
dc.language.isoeng
dc.publisherNova Science Publishers
dc.relation.isformatofVersió postprint del document publicat a: https://search.proquest.com/docview/2190325008?pq-origsite=gscholar&fromopenview=true#
dc.relation.ispartofInternational Journal of Computer Research, 2017, vol. 24, num. 2/3, p. 173-193
dc.rights(c) Nova Science Publishers, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationDistribució de Gauss
dc.subject.classificationAnàlisi de regressió
dc.subject.classificationXarxes neuronals convolucionals
dc.subject.otherMachine learning
dc.subject.otherGaussian distribution
dc.subject.otherRegression analysis
dc.subject.otherConvolutional neural networks
dc.titleThe appraisal of machine learning techniques for tourism demand forecasting
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
705063.pdf
Mida:
460.13 KB
Format:
Adobe Portable Document Format