The appraisal of machine learning techniques for tourism demand forecasting
| dc.contributor.author | Clavería González, Óscar | |
| dc.contributor.author | Monte Moreno, Enric | |
| dc.contributor.author | Torra Porras, Salvador | |
| dc.date.accessioned | 2020-12-11T09:31:14Z | |
| dc.date.available | 2020-12-11T09:31:14Z | |
| dc.date.issued | 2017 | |
| dc.date.updated | 2020-12-11T09:31:14Z | |
| dc.description.abstract | Machine learning (ML) methods are being increasingly used with forecasting purposes. This study assesses the predictive performance of several ML models in a multiple-input multiple-output (MIMO) setting that allows incorporating the cross-correlations between the inputs. We compare the forecast accuracy of a Gaussian process regression (GPR) model to that of different neural network architectures in a multi-step-ahead time series prediction experiment. We find that the radial basis function (RBF) network outperforms the GPR model, especially for long-term forecast horizons. As the memory of the models increases, the forecasting performance of the GPR improves, suggesting the convenience of designing a model selection criteria in order to estimate the optimal number of lags used for concatenation. | |
| dc.format.extent | 21 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 705063 | |
| dc.identifier.issn | 1535-6698 | |
| dc.identifier.uri | https://hdl.handle.net/2445/172665 | |
| dc.language.iso | eng | |
| dc.publisher | Nova Science Publishers | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://search.proquest.com/docview/2190325008?pq-origsite=gscholar&fromopenview=true# | |
| dc.relation.ispartof | International Journal of Computer Research, 2017, vol. 24, num. 2/3, p. 173-193 | |
| dc.rights | (c) Nova Science Publishers, 2017 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Econometria, Estadística i Economia Aplicada) | |
| dc.subject.classification | Aprenentatge automàtic | |
| dc.subject.classification | Distribució de Gauss | |
| dc.subject.classification | Anàlisi de regressió | |
| dc.subject.classification | Xarxes neuronals convolucionals | |
| dc.subject.other | Machine learning | |
| dc.subject.other | Gaussian distribution | |
| dc.subject.other | Regression analysis | |
| dc.subject.other | Convolutional neural networks | |
| dc.title | The appraisal of machine learning techniques for tourism demand forecasting | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1