Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Sala Huerta, Alba et al, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/214854

An integrated machine-learning model to predict nucleosome architecture

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined nucleosome arrays) or in antiphase (leading to fuzzy nucleosome architectures). We found that the first (+1) and the last (-last) nucleosomes are contiguous to regions signaled by transcription factor binding sites and unusual DNA physical properties that hinder nucleosome wrapping. Based on these analyses, we developed a method that combines Machine Learning and signal transmission theory able to predict the basal locations of the nucleosomes with an accuracy similar to that of experimental MNase-seq based methods. Graphical Abstract

Citació

Citació

SALA HUERTA, Alba, LABRADOR ISERN, Mireia, BUITRAGO, Diana, JORGE, Pau de, BATTISTINI, Federica, HEATH, Isabelle brun, OROZCO LÓPEZ, Modesto. An integrated machine-learning model to predict nucleosome architecture. _Nucleic Acids Research_. 2024. [consulta: 24 de gener de 2026]. ISSN: 1362-4962. [Disponible a: https://hdl.handle.net/2445/214854]

Exportar metadades

JSON - METS

Compartir registre