Carregant...
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/214854
An integrated machine-learning model to predict nucleosome architecture
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined nucleosome arrays) or in antiphase (leading to fuzzy nucleosome architectures). We found that the first (+1) and the last (-last) nucleosomes are contiguous to regions signaled by transcription factor binding sites and unusual DNA physical properties that hinder nucleosome wrapping. Based on these analyses, we developed a method that combines Machine Learning and signal transmission theory able to predict the basal locations of the nucleosomes with an accuracy similar to that of experimental MNase-seq based methods. Graphical Abstract
Matèries
Matèries (anglès)
Citació
Citació
SALA HUERTA, Alba, LABRADOR ISERN, Mireia, BUITRAGO, Diana, JORGE, Pau de, BATTISTINI, Federica, HEATH, Isabelle brun, OROZCO LÓPEZ, Modesto. An integrated machine-learning model to predict nucleosome architecture. _Nucleic Acids Research_. 2024. [consulta: 24 de gener de 2026]. ISSN: 1362-4962. [Disponible a: https://hdl.handle.net/2445/214854]