An integrated machine-learning model to predict nucleosome architecture

dc.contributor.authorSala Huerta, Alba
dc.contributor.authorLabrador Isern, Mireia
dc.contributor.authorBuitrago, Diana
dc.contributor.authorJorge, Pau de
dc.contributor.authorBattistini, Federica
dc.contributor.authorHeath, Isabelle Brun
dc.contributor.authorOrozco López, Modesto
dc.date.accessioned2024-08-29T09:06:24Z
dc.date.available2024-08-29T09:06:24Z
dc.date.issued2024-08-20
dc.date.updated2024-08-28T13:42:46Z
dc.description.abstractWe demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined nucleosome arrays) or in antiphase (leading to fuzzy nucleosome architectures). We found that the first (+1) and the last (-last) nucleosomes are contiguous to regions signaled by transcription factor binding sites and unusual DNA physical properties that hinder nucleosome wrapping. Based on these analyses, we developed a method that combines Machine Learning and signal transmission theory able to predict the basal locations of the nucleosomes with an accuracy similar to that of experimental MNase-seq based methods. Graphical Abstract
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina6676347
dc.identifier.issn1362-4962
dc.identifier.pmid39162225
dc.identifier.urihttps://hdl.handle.net/2445/214854
dc.language.isoeng
dc.publisherOxford Academic
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/nar/gkae689
dc.relation.ispartofNucleic Acids Research, 2024
dc.relation.urihttps://doi.org/10.1093/nar/gkae689
dc.rightscc by-nc-nd (c) Sala Huerta, Alba et al, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationBiologia molecular
dc.subject.otherMachine learning
dc.subject.otherMolecular biology
dc.titleAn integrated machine-learning model to predict nucleosome architecture
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
NAR_Sala et al_2024.pdf
Mida:
2.57 MB
Format:
Adobe Portable Document Format