Algorithmic methods to infer the evolutionary trajectories in cancer progression

dc.contributor.authorCaravagna, Giulio
dc.contributor.authorGraudenzi, Alex
dc.contributor.authorRamazzotti, Daniele
dc.contributor.authorSanz Pamplona, Rebeca
dc.contributor.authorDe Sano, Luca
dc.contributor.authorMauri, Giancarlo
dc.contributor.authorMoreno Aguado, Víctor
dc.contributor.authorAntoniotti, Marco
dc.contributor.authorMishra, Bud
dc.date.accessioned2023-02-10T17:22:19Z
dc.date.available2023-02-10T17:22:19Z
dc.date.issued2016-06-28
dc.date.updated2023-02-10T17:22:19Z
dc.description.abstractThe genomic evolution inherent to cancer relates directly to a renewed focus on the voluminous next-generation sequencing data and machine learning for the inference of explanatory models of how the (epi)genomic events are choreographed in cancer initiation and development. However, despite the increasing availability of multiple additional -omics data, this quest has been frustrated by various theoretical and technical hurdles, mostly stemming from the dramatic heterogeneity of the disease. In this paper, we build on our recent work on the 'selective advantage' relation among driver mutations in cancer progression and investigate its applicability to the modeling problem at the population level. Here, we introduce PiCnIc (Pipeline for Cancer Inference), a versatile, modular, and customizable pipeline to extract ensemble-level progression models from cross-sectional sequenced cancer genomes. The pipeline has many translational implications because it combines state-of-the-art techniques for sample stratification, driver selection, identification of fitness-equivalent exclusive alterations, and progression model inference. We demonstrate PiCnIc's ability to reproduce much of the current knowledge on colorectal cancer progression as well as to suggest novel experimentally verifiable hypotheses.
dc.format.extent1 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec665144
dc.identifier.issn0027-8424
dc.identifier.pmid27357673
dc.identifier.urihttps://hdl.handle.net/2445/193443
dc.language.isoeng
dc.publisherNational Academy of Sciences
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1073/pnas.1520213113
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of America - PNAS, 2016, vol. 113, num. 28, p. E4025-E4034
dc.relation.urihttps://doi.org/10.1073/pnas.1520213113
dc.rights(c) Caravagna, Giulio et al., 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciències Clíniques)
dc.subject.classificationCàncer
dc.subject.classificationAlgorismes genètics
dc.subject.classificationEstadística bayesiana
dc.subject.otherCancer
dc.subject.otherGenetic algorithms
dc.subject.otherBayesian statistical decision
dc.titleAlgorithmic methods to infer the evolutionary trajectories in cancer progression
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
665144.pdf
Mida:
2.4 MB
Format:
Adobe Portable Document Format