Finite subschemes of abelian varieties and the Schottky problem
| dc.contributor.author | Gulbrandsen, Martin G. | |
| dc.contributor.author | Lahoz Vilalta, Martí | |
| dc.date.accessioned | 2018-09-27T09:03:21Z | |
| dc.date.available | 2018-09-27T09:03:21Z | |
| dc.date.issued | 2011 | |
| dc.date.updated | 2018-09-27T09:03:22Z | |
| dc.description.abstract | The Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties $(A,\Theta)$ of dimension $g$, by the existence of $g+2$ points $\Gamma \subset A$ in special position with respect to $2 \Theta$, but general with respect to $\Theta$, and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly nonreduced subschemes $\Gamma$. | |
| dc.format.extent | 26 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 673680 | |
| dc.identifier.issn | 0373-0956 | |
| dc.identifier.uri | https://hdl.handle.net/2445/124869 | |
| dc.language.iso | eng | |
| dc.publisher | Association des Annales de l'Institut Fourier | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.5802/aif.2665 | |
| dc.relation.ispartof | Annales de l'Institut Fourier, 2011, vol. 61, num. 5, p. 2039-2064 | |
| dc.relation.uri | https://doi.org/10.5802/aif.2665 | |
| dc.rights | (c) Association des Annales de l'Institut Fourier, 2011 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Corbes | |
| dc.subject.classification | Varietats abelianes | |
| dc.subject.other | Curves | |
| dc.subject.other | Abelian varieties | |
| dc.title | Finite subschemes of abelian varieties and the Schottky problem | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1