Finite subschemes of abelian varieties and the Schottky problem

dc.contributor.authorGulbrandsen, Martin G.
dc.contributor.authorLahoz Vilalta, Martí
dc.date.accessioned2018-09-27T09:03:21Z
dc.date.available2018-09-27T09:03:21Z
dc.date.issued2011
dc.date.updated2018-09-27T09:03:22Z
dc.description.abstractThe Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties $(A,\Theta)$ of dimension $g$, by the existence of $g+2$ points $\Gamma \subset A$ in special position with respect to $2 \Theta$, but general with respect to $\Theta$, and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly nonreduced subschemes $\Gamma$.
dc.format.extent26 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec673680
dc.identifier.issn0373-0956
dc.identifier.urihttps://hdl.handle.net/2445/124869
dc.language.isoeng
dc.publisherAssociation des Annales de l'Institut Fourier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.5802/aif.2665
dc.relation.ispartofAnnales de l'Institut Fourier, 2011, vol. 61, num. 5, p. 2039-2064
dc.relation.urihttps://doi.org/10.5802/aif.2665
dc.rights(c) Association des Annales de l'Institut Fourier, 2011
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationCorbes
dc.subject.classificationVarietats abelianes
dc.subject.otherCurves
dc.subject.otherAbelian varieties
dc.titleFinite subschemes of abelian varieties and the Schottky problem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
673680.pdf
Mida:
738.73 KB
Format:
Adobe Portable Document Format