Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier Ltd, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192635

Optimized CT-MR neurological image fusion framework using biologically inspired spiking neural model in hybrid $\ell_1-\ell_0$ layer decomposition domain

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Medical image fusion plays an important role in the clinical diagnosis of several critical neurological diseases by merging complementary information available in multimodal images. In this paper, a novel CT-MR neurological image fusion framework is proposed using an optimized biologically inspired feedforward neural model in twoscale hybrid $\ell_1-\ell_0$ decomposition domain using gray wolf optimization to preserve the structural as well as texture information present in source CT and MR images. Initially, the source images are subjected to two-scale $\ell_1-\ell_0$ decomposition with optimized parameters, giving a scale-1 detail layer, a scale-2 detail layer and a scale2 base layer. Two detail layers at scale-1 and 2 are fused using an optimized biologically inspired neural model and weighted average scheme based on local energy and modified spatial frequency to maximize the preservation of edges and local textures, respectively, while the scale-2 base layer gets fused using choose max rule to preserve the background information. To optimize the hyper-parameters of hybrid $\ell_1-\ell_0$ decomposition and biologically inspired neural model, a fitness function is evaluated based on spatial frequency and edge index of the resultant fused image obtained by adding all the fused components. The fusion performance is analyzed by conducting extensive experiments on different CT-MR neurological images. Experimental results indicate that the proposed method provides better-fused images and outperforms the other state-of-the-art fusion methods in both visual and quantitative assessments.

Citació

Citació

DAS, Manisha, GUPTA, Deep, RADEVA, Petia, BAKDE, Ashwini m.. Optimized CT-MR neurological image fusion framework using biologically inspired spiking neural model in hybrid $\ell_1-\ell_0$ layer decomposition domain. _Biomedical Signal Processing And Control_. 2021. Vol. 68. [consulta: 21 de gener de 2026]. ISSN: 1746-8094. [Disponible a: https://hdl.handle.net/2445/192635]

Exportar metadades

JSON - METS

Compartir registre